Modeling and Optimal Operation of a Network of Energy Hubs System With Distributed Energy Resources

Author(s):  
Shixi Ma ◽  
Dengji Zhou ◽  
Huisheng Zhang ◽  
Zhenhua Lu

Energy hubs is a functional unit which is capable of transporting transforming and storing of several kinds of energy. Several hubs can be combined as a network and achieve higher efficiency by exchanging energy with each other. A framework to assist the decision-making process towards the optimal integration of independent small scale distributed energy systems and traditional large scale CHP power plants is presented using an energy supply system in Shanghai as a case study. A model of this complex network of energy hubs with renewable energy resources is presented based on energy flow between its constituent elements. Furthermore, GA optimization method is presented for short term 24-hour optimal operation. Case study are undertaken on a 7-node energy system which comprises 4 energy hubs and 3 load hubs. Results validate the high efficiency of this system. Two cases with and without internal-combustion engine failure within the network are considered. The results showed that the proposed system can enhance the energy utilization efficiency and reduce the system operation cost, even under a system contingency.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Shixi Ma ◽  
Dengji Zhou ◽  
Huisheng Zhang ◽  
Shilie Weng ◽  
Tiemin Shao

Energy hubs is an integrated system which is capable of transporting, transforming, and storing several types of energy. A number of hubs can be combined as a network and achieve higher efficiency by exchanging information and energy with each other. A decision-making framework for optimal integration of independent small-scale distributed energy systems and traditional large scale combined heating and power (CHP) plants is presented, and an energy supply system with renewable energy resources in Shanghai is cited as a case study. A performance simulation model of this energy network is proposed based on energy hub concept and energy flow between its elements. Furthermore, a novel optimization method named Whales optimization algorithm (WOA) is presented for 24 h operational optimization. A case study is undertaken on a seven-node energy system, including four energy hubs and three load hubs. The results of the case study show that the proposed model and optimization method can improve energy utilization efficiency and reduce system operating costs, even under a system contingency condition.


Author(s):  
Giuseppe Marco Tina ◽  
Salvatore Cavalieri ◽  
Gian Giuseppe Soma ◽  
Gianni Viano ◽  
Sebastiano De Fiore ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1803
Author(s):  
Nasser Hosseinzadeh ◽  
Ahmed Al Maashri ◽  
Naser Tarhuni ◽  
Abdelsalam Elhaffar ◽  
Amer Al-Hinai

This article presents the development of a platform for real-time monitoring of multi-microgrids. A small-scale platform has been developed and implemented as a prototype, which takes data from various types of devices located at a distance from each other. The monitoring platform is interoperable, as it allows several protocols to coexist. While the developed prototype is tested on small-scale distributed energy resources (DERs), it is done in a way to extend the concept for monitoring several microgrids in real scales. Monitoring strategies were developed for DERs by making a customized two-way communication channel between the microgrids and the monitoring center using a long-range bridged wireless local area network (WLAN). In addition, an informative and easy-to-use software dashboard was developed. The dashboard shows real-time information and measurements from the DERs—providing the user with a holistic view of the status of the DERs. The proposed system is scalable, modular, facilitates the interoperability of various types of inverters, and communicates data over a secure communication channel. All these features along with its relatively low cost make the developed real-time monitoring platform very useful for online monitoring of smart microgrids.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Koen Kok ◽  
Zsofia Derzsi ◽  
Jaap Gordijn ◽  
Maarten Hommelberg ◽  
Cor Warmer ◽  
...  

Author(s):  
Abdelbasset Krama ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Alan Palazzolo

Abstract This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with MATLAB software as well as in a novel hardware in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulation and HIL testing demonstrate the feasibility and high performance of the proposed controller.


2020 ◽  
Vol 252 ◽  
pp. 119772 ◽  
Author(s):  
Pablo Cortés ◽  
Paloma Auladell-León ◽  
Jesús Muñuzuri ◽  
Luis Onieva

Sign in / Sign up

Export Citation Format

Share Document