scholarly journals Thermomechanical Component Mode Synthesis for Blade Casing Interaction Prediction

Author(s):  
Nicolas Guerin ◽  
Fabrice Thouverez ◽  
Claude Gibert ◽  
Mathias Legrand ◽  
Patricio Almeida

Increasing the efficiency of turbomachines is a major concern as it directly translates into lower environmental impact and improved operational costs. One solution is to reduce the blade-casing operating clearance in order to mitigate aerodynamic losses at the unavoidable cost of increased structural unilateral contact and friction occurrences. In centrifugal compressors, the dynamic behaviour of the structures interacting through unilateral contact and friction is not yet fully understood. In fact, the heat generated during such events may affect the dynamics through thermal stresses. This paper presents a complete thermomechanical modelling strategy of impeller rotor and casing, and of blade-tip/casing contact events. A fully coupled thermomechanical modal synthesis technique is introduced and applied to turbomachinery-related models. The blisk is reduced via a hybrid modal synthesis technique combining the Craig-Bampton method and the characteristic constraint mode method. The casing model is reduced using an axisymmetric harmonic modal synthesis. Both strategies involve thermomechanical modes embedding thermal dilatation effects. The contact modelling algorithm is then introduced. It handles unilateral contact and friction occurrences together with heating effects. This algorithm uses the above mentioned reduced-order models as input data to avoid CPU-intensive simulations. The results show that the thermomechanical behaviour of the structures is well preserved by the reduction strategy proposed. Contact simulations on simple cases show qualitative results in accordance with expectations. Further work is needed in order to validate the strategy based on experimental results. However, this methodology opens the way to extended multiphysics simulations of contact events in turbomachinery.

1992 ◽  
Vol 99 (2-3) ◽  
pp. 395-412 ◽  
Author(s):  
P.D. Panagiotopoulos ◽  
E.S. Mistakidis ◽  
O.K. Panagouli

Author(s):  
C. De Maesschalck ◽  
S. Lavagnoli ◽  
G. Paniagua

Tip leakage flows in unshrouded high speed turbines cause large aerodynamic penalties, induce significant thermal loads and give rise to intense thermal stresses onto the blade tip and casing endwalls. In the pursuit of superior engine reliability and efficiency, the turbine blade tip design is of paramount importance and still poses an exceptional challenge to turbine designers. The ever-increasing rotational speeds and pressure loadings tend to accelerate the tip flow velocities beyond the transonic regime. Overtip supersonic flows are characterized by complex flow patterns, which determine the heat transfer signature. Hence, the physics of the overtip flow structures and the influence of the geometrical parameters on the overtip flow require further understanding to develop innovative tip designs. Conventional blade tip shapes are not adequate for such high speed flows and hence, potential for enhanced performances lays in appropriate tip shaping. The present research aims to quantify the prospective gain offered by a fully contoured blade tip shape against conventional geometries such as a flat and squealer tip. A detailed numerical study was conducted on a modern transonic turbine rotor blade (Reynolds number is 5.5 × 105, relative exit Mach number is 0.9) by means of three-dimensional Reynolds-Averaged Navier-Stokes calculations. The novel contoured tip geometry was designed based on a 2D tip shape optimization in which only the upper 2% of the blade span was modified. This study yields a deeper insight into the application of blade tip carving in high speed turbines and provides guidelines for future tip designs with enhanced aerothermal performances.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1869-1875
Author(s):  
Ji-Bao Qiu ◽  
Zu-Guang Ying ◽  
L. H. Yam

Sign in / Sign up

Export Citation Format

Share Document