scholarly journals Influence of Working Fluid Composition on the Optimum Characteristics of Blended Supercritical Carbon Dioxide Cycles

2021 ◽  
Author(s):  
F. Crespi ◽  
G. S. Martínez ◽  
P. Rodriguez de Arriba ◽  
D. Sánchez ◽  
F. Jiménez-Espadafor

Abstract The supercritical Carbon Dioxide power cycle technology has attracted growing interest from the scientific community, becoming one of the most important options currently considered for CSP applications. This is thanks to its high thermal efficiency, even at moderate turbine inlet temperatures, and small footprint. Nevertheless, sCO2 power cycles require a fairly low compressor inlet temperature to exploit their full thermodynamic potential. When this cannot be achieved, as it is usually the case for Concentrated Solar Power plants where ambient temperatures are high, the interest of the technology is compromised. To compensate for this effect, the SCARABEUS project is working on the development of certain chemical dopants that could be added to the raw CO2, obtaining new working fluids with the same or even better performance than pure CO2 even at higher minimum cycle temperatures. This paper studies the impact of using CO2 mixtures blended with Hexaflurorobenzene (C6F6) and Titanium Tetrachloride (TiCl4). It is found that these mixtures enable thermal efficiencies that are higher than if pure CO2 were used. The efficiency gain can be as high as 3 percentage points, depending on the dopant used and the operating conditions considered. In addition to this absolute performance gain, the paper reveals that there are additional degrees of freedom that enable more effective cycle optimisation. These are the dopant molar content, not only its composition, and the cycle layout used. When this is studied, it is found that the optimum molar content ranges from 10 to 20% and that the layouts of interest when using mixtures are simpler than if plain CO2 were used. These results open the way for a significant performance enhancement of Concentrated Solar Power plants.

2020 ◽  
Vol 10 (15) ◽  
pp. 5049 ◽  
Author(s):  
Francesco Crespi ◽  
David Sánchez ◽  
Gonzalo S. Martínez ◽  
Tomás Sánchez-Lencero ◽  
Francisco Jiménez-Espadafor

This paper provides an assessment of the expected Levelised Cost of Electricity enabled by Concentrated Solar Power plants based on Supercritical Carbon Dioxide (sCO 2 ) technology. A global approach is presented, relying on previous results by the authors in order to ascertain whether these innovative power cycles have the potential to achieve the very low costs of electricity reported in the literature. From a previous thermodynamic analysis of sCO 2 cycles, three layouts are shortlisted and their installation costs are compared prior to assessing the corresponding cost of electricity. Amongst them, the Transcritical layout is then discarded due to the virtually impossible implementation in locations with high ambient temperature. The remaining layouts, Allam and Partial Cooling are then modelled and their Levelised Cost of Electricity is calculated for a number of cases and two different locations in North America. Each case is characterised by a different dispatch control scheme and set of financial assumptions. A Concentrated Solar Power plant based on steam turbine technology is also added to the assessment for the sake of comparison. The analysis yields electricity costs varying in the range from 8 to over 11 ¢/kWh, which is near but definitely not below the 6 ¢/kWh target set forth by different administrations. Nevertheless, in spite of the results, a review of the conservative assumptions adopted in the analysis suggests that attaining costs substantially lower than this is very likely. In other words, the results presented in this paper can be taken as an upper limit of the economic performance attainable by Supercritical Carbon Dioxide in Concentrated Solar Power applications.


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 144-156
Author(s):  
Luis F. González-Portillo ◽  
Javier Muñoz-Antón ◽  
José M. Martínez-Val

2020 ◽  
Author(s):  
Marco Binotti ◽  
Gioele Di Marcoberardino ◽  
Paolo Iora ◽  
Costante Invernizzi ◽  
Giampaolo Manzolini

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


2018 ◽  
Vol 91 ◽  
pp. 802-811 ◽  
Author(s):  
Carlos M. Fernández-Peruchena ◽  
Frank Vignola ◽  
Martín Gastón ◽  
Vicente Lara-Fanego ◽  
Lourdes Ramírez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document