cost of electricity
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 127)

H-INDEX

25
(FIVE YEARS 7)

2021 ◽  
Vol 7 (4) ◽  
pp. 303-309
Author(s):  
Anatoly V. Zrodnikov ◽  
Viktor M. Dekusar ◽  
Olga S. Gurskaya

The authors propose an approach to the calculation of the levelized unit fuel cost (LUFC) of electricity generation for a fast reactor in a two-component nuclear energy system (NES) with regard for plutonium production. The approach is based on taking into account the additional economic effect, which can be achieved through the sale at the market price of the natural uranium released due to the substitution of thermal reactors by fast reactors with MOX fuel based on the plutonium bred in a fast reactor. This requires considering simultaneously the reactor parts of the fuel cycle for fast and thermal reactors. Relationships have been obtained which connect the key neutronic and fuel characteristics with the NPP and fuel cycle economic performance. The described methodology was used for the computational study of the LUFC for a fast sodium-cooled reactor. Calculations have shown that, in the considered case, taking into account the plutonium production leads to the LUFC reduction by nearly half and, therefore, to a major decrease in the total unit cost of electricity generation (levelized cost of electricity or LCOE).


2021 ◽  
Vol 29 (2) ◽  
pp. 359-383
Author(s):  
Anatoly P. Dzyuba

Reducing the cost of electricity consumption by industrial enterprises is the most important area of increasing the operational efficiency of their activities. The article is devoted to the issue of reducing the cost of paying for the service component of the transport component of purchased electrical energy from industrial enterprises that have technological connection to the electrical networks of electricity producers. The article makes an empirical study of the features of the pricing of payment for the services of the transport component of purchased electrical energy for industrial enterprises connected to the electric grids of electricity producers with the identification of factors influencing the overestimation of the cost of paid electricity, and calculating such overestimations using the example of a typical schedule of electricity consumption of a machinebuilding enterprise for various regions Russia. On the basis of the developed author's indicators (tariff coefficient for electricity transportation by the level of GNP, index of tariff coefficient for electricity transportation, weighted average price for electricity transportation, index of weighted average price for electricity transportation, integral index of efficiency of GNP tariffs) study of the effectiveness of the application of tariffs for the transport of electricity for industrial enterprises connected to the electric networks of electricity producers. Based on the calculated indicators, the article groups the regions into three main groups, with the development of recommendations for managing the cost of purchasing electricity by the component of the cost of the transport component of purchased electricity in each group. As the most optimal option for reducing the cost of electricity transportation, the author proposes the introduction of demand management for electricity consumption, which will reduce the costs of industrial enterprises that pay for the transport component of purchased electricity at unfavorable tariff configurations.


2021 ◽  
Author(s):  
Yu Lei ◽  
Xi Lu ◽  
Ying Wang ◽  
Haoqiang Guo ◽  
Yu Wang ◽  
...  

Vigorously promoting the development of photovoltaic (PV) resources is a positive measure taken by humanity in response to the changes in global climate and environment. At the same time, combining photovoltaic power generation systems with traditional power generation systems, using the advantages of different power generation systems to achieve real-time scheduling optimization has become an urgent problem to be solved in engineering applications. This paper attempts to study the climate and environmental benefits of the development of photovoltaic resource in Africa by taking Angola as an example based on actual project data. According to the characteristics, load requirements, seasonal characteristics and actual engineering background of Tombwa in Angola, a baseline Scenario and four comparative Scenarios were established, and the operating costs of the five Scenarios in local rainy season and dry season were obtained respectively. The cost of electricity for the five Scenarios calculated subsequently. Through real-time scheduling and optimization of the software, the emission characteristics of CO2, NOx and CO under five Scenarios are obtained, and the climate benefits and environmental benefits of the five scenarios are further analyzed and compared. The results show that the development of photovoltaic resources in Angola has good climate and environmental benefits. In addition, the combine application of diesel, PV and battery power system will be the most effective of the five Scenarios to reduce the CO2 emissions with the lowest levelized cost of electricity (LCOE) of 0.38 yuan/kwh, as a cost-effective solution in remote areas of Angola, Africa.


2021 ◽  
Author(s):  
Pugalenthi Nanadagopal ◽  
Matthias Duerr ◽  
Ole Fahrendorf ◽  
Dan Haid ◽  
Hubert Paprotna

Abstract Gas turbine-based combine cycle (GT-CC) economic evaluation is very important to bring together own equipment manufacturing companies (OEM’s) and power plant owners. The fuel cost & cost of electricity play the major role in economic evaluation which drives the decision during the bidding. The first portion of this paper encompasses the different cost analysis methods like Net Present Value (NPV), Internal Rate of Return (IRR), Levelized Cost of Electricity (LCOE) and Pay Back Period (PBP) for different fuel costs and electricity prices. The second portion of the paper covers the delta cost benefits due to improvement in the combined cycle degradation GT-CC operators or customers are looking for the opportunities to control and minimize the degradation of the gas turbine power plant which directly impact the profitability. The customer or operator always monitor the plant performance to understand the life cost impact on performance degradation. This paper will help the customers & GT-CC OEM companies to focus on different area to reduce the unit cost of generating electricity, decide to move forward with the project during the proposal and improve the business at various regions based on fuel cost and global geographical political situations. Also, the reader can digest the benefits of improved degradation curve over the normal curve.


2021 ◽  
Vol 304 ◽  
pp. 117641
Author(s):  
Michael M. Whiston ◽  
Inês M. Lima Azevedo ◽  
Shawn Litster ◽  
Constantine Samaras ◽  
Kate S. Whitefoot ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Thirunavukkarasu ◽  
Yashwant Sawle

Electrification in rural areas is relatively costly compared to urban areas. Therefore, the aim of this research is to identify the best combination of hybrid renewable energy systems (HRESs) to satisfy the load demand in a sustainable and cost-efficient way. The techno-economic study of stand-alone hybrid photovoltaic–wind turbine–diesel–battery-converter energy systems based on the hybrid optimization model for electric renewable (HOMER) simulation has been analyzed for various locations in the Tamil Nadu state, India. Various combinations of the systems have been compared and analyzed based on the performance of their technical parameters, costs, the electrical power production of each source, and unmet load. The findings indicated that the off-grid solar–wind–diesel–battery configuration is the most economical for all the sites among other system configurations. Comparing with conventional diesel generators among all the locations, a combination of solar/wind/diesel/battery is the economically best design for Thoothukudi, with the least and most reliable solution in terms of net present cost and cost of energy. Also, the impact of intermittent variables becomes significant, so sensitivity analysis for the various parameters has been carried out. The study finds that the least cost of electricity and the net present cost of electricity for Thoothukudi are achieved at 0.266 $/kWh and 138,197 $, respectively. This is economical compared to a stand-alone diesel system where the obtained COE is $1.88 and the NPC is $977523. In the stand-alone diesel operating mode, 41854 kg of CO2 is produced, which is higher than CO2 emissions associated with any other renewable energy systems. According to the results, the Kanyakumari location outperforms in terms of producing environmental pollutants with emission of 1,020 kg/y CO2 at their best. Moreover, the results of the proposed study imply that the proposed renewable energy system in remote sites could be a more economical measure.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012123
Author(s):  
M V Garievskii

Abstract The purpose of the research is to select the priorities for the development of various types of power plants and to substantiate the structure of generating capacities. An improved method has been developed for the selection of priorities for the development of various types of power plants, taking into account the service life and economic performance of the main equipment of power plants in variable modes based on equivalent operating hours. The influence of variable modes of combined-cycle gas installations on the service life of the main equipment (steam and gas turbines) is studied. The comparative efficiency of CCGT-450 in variable modes is calculated, taking into account the wear of the main equipment. As a result of calculations, it was found that with the minimum forecast prices for natural gas, the most efficient power plant (among those considered) is combined cycle power plant, which provides the lowest prime cost of electricity when operating in the base mode and the least increase in the prime cost of electricity when operating in an alternating mode.


2021 ◽  
Vol 880 (1) ◽  
pp. 012049
Author(s):  
A S Putra ◽  
I Garniwa ◽  
E S Arilanggaaji ◽  
S S Pradana

Abstract Electricity is the basis of national development in a country. Power plants in Indonesia produces up to 283.8 TWh and are dominated by coal power plants which increase the amount of the greenhouse gases (GHG). In order to prevent more environmental problems, Indonesia ratified Paris Agreement by publishing the roadmap of Nationally Determined Contribution (NDC) that committed in reducing 29% of GHG emissions in 2030, which 11% of them are from the energy sector contributions. This research focuses on the implementation of the carbon cap and trade (CAT) between coal power plants having 300-400 MW capacity, which can affect their cost of electricity (Rp/kWh). It is well known that cap and trade (CAT) is a method used for reducing the mitigation cost of emission reduction in an effective way. From this research, it is found that the highest rise of incremental cost belongs to the 300 MW power plant in scenario 9 and the increase is from Rp.431.00/kWh to Rp.462.77/kWh, or approximately 7.37%. This research also shows that the most optimal carbon price is in the range of Rp. 130,165 to Rp.130,183 because the rank of the 330 MW and 400 MW power plant in merit order changes over in this condition. In the future, this research can be used as a comparison with the higher coal power plant capacity, so that an alternative way is obtained to determine the more optimal merit order.


Sign in / Sign up

Export Citation Format

Share Document