Effect of Nano-Particles on Pool Boiling Heat Transfer of Refrigerant 141b

Author(s):  
Da-Wei Liu ◽  
Chien-Yuh Yang

Fluids with nano-sized particles have been proved that may effectively enhance the single-phase convective heat transfer performance. For pool boiling heat transfer, the published test results seems conflicted to each other. Some measured heat transfer coefficient decreased with increasing particle concentration but some showed no appreciable difference. This study provides an experimental investigation on pool boiling heat transfer performance of refrigerants R-141b with and without nano-sized Au particles on horizontal plain tubes. The test results show that the boiling heat transfer coefficients increase with increasing nano-particles concentration. At particles concentration of 1.0%, the heat transfer coefficient is more than twice higher than those without nano-particles. However, the heat transfer coefficients decreased for each test after every 5 days and finally close to those of R-141b without nano-particles. The SPM investigation shows that the test tube surface roughness decreased from 0.317 μm before boiling test to 0.162 μm after test. Further investigation by TEM and Dynamic Light Scattering particle analyzer shows that the nano-particles aggregated from 3 μm before test to 110 μm after test. This results show that the nano-sized Au particles are able to significantly increase pool boiling heat transfer of refrigerant R-141b on plain tube surface. The tube surface roughness and particle size changed after boiling test. Both of these effects degrade the boiling heat transfer coefficients.

2003 ◽  
Author(s):  
Myeong-Gie Kang

Effects of the width and location of a flow disturbing circular plate, installed at a vertical tube surface, on nucleate pool boiling heat transfer of water at atmospheric pressure have been investigated experimentally. Through the tests, changes in the degree of intensity of liquid agitation have been analyzed. The plate changes the fluid flow around the tube as well as heat transfer coefficients on the tube surface. It is identified that the plate width changes the rate of the circulating flow whereas its location changes the growth of the active agitating flow. Moreover, the flow chugging was observed at the downside of the plate.


1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Wen-Tao Ji ◽  
Ding-Cai Zhang ◽  
Nan Feng ◽  
Jian-Fei Guo ◽  
Mitsuharu Numata ◽  
...  

Pool boiling heat transfer coefficients of R134a with different lubricant mass fractions for one smooth tube and five enhanced tubes were tested at a saturation temperature of 6°C. The lubricant used was polyvinyl ether. The lubrication mass fractions were 0.25%, 0.5%, 1.0%, 2.0%, 3.0%, 5.0%, 7.0%, and 10.0%, respectively. Within the tested heat flux range, from 9000 W/m2 to 90,000 W/m2, the lubricant generally has a different influence on pool boiling heat transfer of these six tubes.


1984 ◽  
Vol 106 (1) ◽  
pp. 184-190 ◽  
Author(s):  
M. K. Jensen ◽  
D. L. Jackman

This paper describes an experimental investigation to determine the mechanism governing nucleate pool boiling heat transfer in refrigerant-oil mixtures, the role diffusion plays in this process, and the influence of the fluid mixture properties. Boiling heat transfer data were taken in mixtures of up to 10 percent oil by weight in R-113. Thermophysical properties of the mixtures (density, viscosity, surface tension, specific heat, and contact angle) were measured. The decrease in heat transfer coefficient with increasing oil concentration is attributed to diffusion in an oil-enriched region surrounding the growing vapor bubbles. A correlation based on the postulated mechanism is presented which shows fair agreement with the experimental data from this study and with data obtained from the literature.


Sign in / Sign up

Export Citation Format

Share Document