tube surface
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 43 (2) ◽  
pp. 727-738
Author(s):  
Lucas Battisti ◽  
◽  
Jheniffer Valmira Warmling ◽  
Claudinei de Freitas Vieira ◽  
Darlin Henrique Ramos de Oliveira ◽  
...  

The selectivity of entomopathogenic fungi to non-target organisms needs to be considered in Integrated Pest Management (IPM), because even though they are biological control agents, if used incorrectly, they can negatively alter the functioning of agroecosystems. Therefore, studies that assess the selectivity of these fungi to beneficial organisms are extremely important. The objective of this work was to evaluate the selectivity of Metarhizium anisopliae (Metarril®) and Beauveria bassiana (Boveril®) to adults of Telenomus podisi Ashmead (Hymenoptera: Scelionidae), under laboratory conditions. The products were evaluated on adult females of T. podisi, at the concentrations recommended by the manufacturer. To this, 0.2 mL of suspensions of each product and control (treatments) were applied to the inner surface of glass tubes, and then a female T. podisi was placed in it (≤ 48 h of emergence). After 24 h of contact, cards with 25 eggs of Euschistus heros Fabricius (Hemiptera: Pentatomidae) were offered for 24 h (COF24). After this period, the COF24 were withdrawn. After 72 h of contact of the female with the tube surface, new E. heros egg cards were made available (COF72) for 24 h for T. podisi ovipositioning. The mortality of T. podisi females was evaluated daily to determine longevity, percentage of parasitism and emergence, sex ratio, and egg-adult period of the T. podisi offspring. Metarril® and Boveril®, considered selective for adult females of T. podisi, did not negatively affect most of the parameters evaluated.


2021 ◽  
Vol 10 (16) ◽  
pp. e195101623481
Author(s):  
Tainah Oliveira Rifane ◽  
Ítalo Hudson Tavares Maia ◽  
Andressa Silva de Oliveira ◽  
Ranyele Elis Alexandre Rodrigues ◽  
Francisbênia Alves Silvestre ◽  
...  

To evaluate the shear bond strength and the fracture type of orthodontic tubes bonded directly with composite resin throughout the enamel surface. 30 bovine teeth were cut into 3 slices with 5 mm each and embedded in PVC pipes with acrylic resin exposing the buccal face. Subsequently, the teeth were submitted to conventional bonding techniques. Natural Ortho resin was applied for direct bonding of Edgewise Standard orthodontic tubes (Morelli®) and light-cured for 20s. A different viscosity resin was chosen and light-cured for 40s to reinforce the tube surface. The samples were divided into the following groups: Orthodontic tube with direct bonding without reinforcement (CONTROL), Tube with Natural Ortho resin + Reinforcement (NO + NO), Tube with Natural Ortho resin + Reinforcement with Flow resin (NO + FL). These were submitted to shear bond strength; immediate and 1-year aging fracture analysis after simulated through thermocycling. In the shear bond strength test, the group of orthodontic tubes that were directly bonded with Natural Ortho resin and reinforced (NO + NO) showed greater strength results after 24 hours and 1 year with values of (p=0.0225) and (p=0.0273). It was statistically differentto the NO + FL and CONTROL reinforced groups. In the fracture analysis, the NO +NO group was classified immediately as composite cohesive, and mixed failure after aging by thermocycling. The addition of a composite resin layer on the surface of the directly bonded orthodontic tube improved bond strength. The reinforcement must be carried out in regular consistency and the use of Flow resin is not indicated.


Author(s):  
Jayesh P ◽  
Mukkamala Y ◽  
Bibin John

Heat transfer enhancement, pumping power and weight minimization in enhanced heat exchangers has long been achieved by deploying tubes with internal surface modifications like microgrooves, ribs, fins, knurls, and dimples with and without tube inserts. This article presents a very extensive review of experimental and computational studies on heat transfer enhancement, which covers convectional and unconventional working fluids under different fluid flow conditions. Compound augmentation with tube surface modifications and inserts has yielded enhancements in the overall heat transfer coefficient of over 116% in the fully developed turbulent flow regime. Exotic fluids like nano-coolants deployed in spiral grooved mircofin tubes yielded 196% enhancement in tube side heat transfer rate for concentrations as low as 0.5% by volume, while the thermal efficiency index measuring the overall enhancement in relation to the pumping power was 75%. However, reviews that address the combined effect of unconventional fluids, surface modifications and tube inserts on the overall thermo-hydraulic performance of annular heat exchangers seem to be limited. Further, nano-coolants aren’t frequently used in the process industry. The goal of this study is to document and evaluate the impact of cost-effective and energy-saving passive enhancement techniques such as tube surface modifications, tube inserts, and annular enhancement techniques on annular heat exchangers used in the process industries with Newtonian and non-Newtonian fluids. This review should be useful to engineers, academics and medical professionals working with non-Newtonian fluids and enhanced heat exchangers.


2021 ◽  
Vol 98 (2) ◽  
pp. 54-62
Author(s):  
L.V. Opryshko ◽  
◽  
T.V. Golovnyak ◽  

Defects of outer and inner surfaces of hot-rolled tubes of various steel grades and sizes manufactured on tube-rolling unit with a continuous mill (TPA 30-102) at Interpipe Nikotube LLC from a nondeformed continuously cast billets produced by MZ Dniprostal LLC have been studied. Characteristic genetic and morphological signs of defects were revealed which makes it possible to reliably classify them, identify cause of defect formation and recommend measures to eliminate them. Defects on the outer and inner surfaces of tubes are of metallurgical origin and associated with quality of initial continuously cast billets (a consequence of violation of the smelting and continuous casting technology). Defects on the inner surface of tubes were caused on defects in the axial zone of original billets (unacceptable porosity, looseness, chemical inhomogeneity, liquation stripes and cracks, etc.) and are classified as steel-smelting films and bulges. It was found that displacement of the thermal center of crystallization (a feature of the machines for continuous steel casting of curvilinear type) had an additional negative effect on quality of the inner surface of the studied tubes. Defects on the outer surface of tubes are tears of burning in places of accumulation of low-melting inclusions and their eutectics, as well as steel-smelting scabs on rolled dirt and gas bubbles. Likelihood of formation of scabs on outer surface of the studied tubes over rolled crust introversions is not excluded. The study results will allow manufacturers to reliably classify defects, promptly reject tubes with unacceptable defects of metallurgical origin and minimize supply of low-quality products to consumers. These results will later be included in the classifier of defects in tubes manufactured on the TPA 30-102 unit from nondeformed continuously cast billets. The results of the study of natural signs of defects of metallurgical origin in the tube surface will be useful for elaboration of measures aimed at improvement of the technology of manufacturing initial tube billets. Keywords: tube surface defects, continuously cast billets, microstructure, rolled contamination, low-melting inclusions, eutectic, gas bubbles, decarburization, liquation.


Author(s):  
Ning Lang ◽  
Decheng Wang ◽  
Peng Cheng ◽  
Shanchao Zuo ◽  
Pengfei Zhang

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Muradiye Çimdiker Aslan ◽  
Yasin Ünlütürk
Keyword(s):  

2021 ◽  
Vol 1798 (1) ◽  
pp. 012017
Author(s):  
R F Zhao ◽  
X D Xiao ◽  
L Guo ◽  
W C Gao ◽  
Y W Liu

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
Viviane C. Oliveira ◽  
Ana P. Macedo ◽  
Luís D. R. Melo ◽  
Sílvio B. Santos ◽  
Paula R. S. Hermann ◽  
...  

Although different strategies to control biofilm formation on endotracheal tubes have been proposed, there are scarce scientific data on applying phages for both removing and preventing Pseudomonas aeruginosa biofilms on the device surface. Here, the anti-biofilm capacity of five bacteriophages was evaluated by a high content screening assay. We observed that biofilms were significantly reduced after phage treatment, especially in multidrug-resistant strains. Considering the anti-biofilm screens, two phages were selected as cocktail components, and the cocktail’s ability to prevent colonization of the endotracheal tube surface was tested in a dynamic biofilm model. Phage-coated tubes were challenged with different P. aeruginosa strains. The biofilm growth was monitored from 24 to 168 h by colony forming unit counting, metabolic activity assessment, and biofilm morphology observation. The phage cocktail promoted differences of bacterial colonization; nonetheless, the action was strain dependent. Phage cocktail coating did not promote substantial changes in metabolic activity. Scanning electron microscopy revealed a higher concentration of biofilm cells in control, while tower-like structures could be observed on phage cocktail-coated tubes. These results demonstrate that with the development of new coating strategies, phage therapy has potential in controlling the endotracheal tube-associated biofilm.


Sign in / Sign up

Export Citation Format

Share Document