Computation of Rarefied Gaseous Flows in Micro to Nano Scale Channels With Slip to Transient Regimes Using General Second-Order Quadratic Elements

Author(s):  
M. Darbandi ◽  
Y. Daghighi

A new finite-volume-based finite-element method using the quadratic elements is developed in the present study, to analyze the flow in micro and nano sizes with higher-order slip boundary conditions. The method is applied to gaseous flow in micro and nanoscale-channels. The developed method is carried out over a wide range of Knudsen numbers, which cover not only the continuum slip flow regime with 0≤Kn≤0.1 but also it entire the range of transient regime with 0.1<Kn≤10. To make the present computational model capable of simulating micro and nano sizes with the help of the Navier-Stokes equations, the modified high-order slip boundary conditions are applied which need utilizing the advantages of general quadratic second order elements in the computational domain. In other words, this paper introduces a new developed method, which is applied on higher-order elements, and employing reliable boundary conditions that all of these issues are used for the first time in the Micro/Nano study as well. The results reveal excellent agreement with those represented by analytical, DSMC, and Boltzmann calculations. The proposed method (using finite-volume-element strategy which benefits from the advantages of general quadratic second-order elements) is proved to be an efficient, practical, and accurate tool, which robustly extends the capability of our primitive large scale Navier-Stokes solver to micro and nano-scale flow predictions in slip and transient regimes. It can be regarded as a super alternative to classical molecular dynamics-based methods.

2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


2019 ◽  
Vol 9 (1) ◽  
pp. 633-643
Author(s):  
Hugo Beirão da Veiga ◽  
Jiaqi Yang

Abstract H.-O. Bae and H.J. Choe, in a 1997 paper, established a regularity criteria for the incompressible Navier-Stokes equations in the whole space ℝ3 based on two velocity components. Recently, one of the present authors extended this result to the half-space case $\begin{array}{} \displaystyle \mathbb{R}^3_+ \end{array}$. Further, this author in collaboration with J. Bemelmans and J. Brand extended the result to cylindrical domains under physical slip boundary conditions. In this note we obtain a similar result in the case of smooth arbitrary boundaries, but under a distinct, apparently very similar, slip boundary condition. They coincide just on flat portions of the boundary. Otherwise, a reciprocal reduction between the two results looks not obvious, as shown in the last section below.


Sign in / Sign up

Export Citation Format

Share Document