exact controllability
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 97)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 214 ◽  
pp. 112569
Author(s):  
J. Límaco ◽  
Miguel R. Nuñez-Chávez ◽  
Dany Nina Huaman

2021 ◽  
Vol 5 (4) ◽  
pp. 279
Author(s):  
Daliang Zhao

Under a new generalized definition of exact controllability we introduced and with a appropriately constructed time delay term in a special complete space to overcome the delay-induced-difficulty, we establish the sufficient conditions of the exact controllability for a class of impulsive fractional nonlinear evolution equations with delay by using the resolvent operator theory and the theory of nonlinear functional analysis. Nonlinearity in the system is only supposed to be continuous rather than Lipschitz continuous by contrast. The results obtained in the present work are generalizations and continuations of the recent results on this issue. Further, an example is presented to show the effectiveness of the new results.


Author(s):  
Oscar Camacho ◽  
Hugo Leiva ◽  
Lenin Riera

When a real-life problem is mathematically modeled by differential equations or another type of equation, there are always intrinsic phenomena that are not taken into account and can affect the behavior of such a model. For example, external forces can abruptly change the model; impulses and delay can cause a breakdown of it. Considering these intrinsic phenomena in the mathematical model makes the difference between a simple differential equation and a differential equation with impulses, delay, and nonlocal conditions. So, in this work, we consider a semilinear nonautonomous neutral differential equation under the influence of impulses, delay, and nonlocal conditions. In this paper we study the controllability of these semilinear neutral differential equations with some of these intrinsic phenomena taking into consideration. Our aim is to prove that the controllability of the associated ordinary linear differential equation is preserved under certain conditions imposed on these new disturbances. In order to achieve our objective, we apply Rothe’s fixed point Theorem to prove the exact controllability of the system. Finally, our method can be extended to the evolution equation in Hilbert spaces with applications to control systems governed by PDE’s equations.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3240
Author(s):  
Zhaoqiang Ge

According to the spatial dimension, equation type, and time sequence, the latest progress in controllability of stochastic linear systems and some unsolved problems are introduced. Firstly, the exact controllability of stochastic linear systems in finite dimensional spaces is discussed. Secondly, the exact, exact null, approximate, approximate null, and partial approximate controllability of stochastic linear systems in infinite dimensional spaces are considered. Thirdly, the exact, exact null and impulse controllability of stochastic singular linear systems in finite dimensional spaces are investigated. Fourthly, the exact and approximate controllability of stochastic singular linear systems in infinite dimensional spaces are studied. At last, the controllability and observability for a type of time-varying stochastic singular linear systems are studied by using stochastic GE-evolution operator in the sense of mild solution in Banach spaces, some necessary and sufficient conditions are obtained, the dual principle is proved to be true, an example is given to illustrate the validity of the theoretical results obtained in this part, and a problem to be solved is introduced. The main purpose of this paper is to facilitate readers to fully understand the latest research results concerning the controllability of stochastic linear systems and the problems that need to be further studied, and attract more scholars to engage in this research.


Author(s):  
Manuel Rissel ◽  
Ya-Guang Wang

This article is concerned with the global exact controllability for ideal incompressible magnetohydrodynamics in a rectangular domain where the controls are situated in both vertical walls. First, global exact controllability via boundary controls is established for a related Elsässer type system by applying the return method, introduced in [Coron J.M., Math. Control Signals Systems, 5(3) (1992) 295--312]. Similar results are then inferred for the original magnetohydrodynamics system with the help of a special pressure-like corrector in the induction equation. Overall, the main difficulties stem from the nonlinear coupling between the fluid velocity and the magnetic field in combination with the aim of exactly controlling the system. In order to overcome some of the obstacles, we introduce ad-hoc constructions, such as suitable initial data extensions outside of the physical part of the domain and a certain weighted space.


2021 ◽  
Vol 26 (6) ◽  
pp. 1031-1051
Author(s):  
JinRong Wang ◽  
T. Sathiyaraj ◽  
Donal O’Regan

In this paper, we study the relative controllability of a fractional stochastic system with pure delay in finite  dimensional stochastic spaces. A set of sufficient conditions is obtained for relative exact controllability using fixed point theory, fractional calculus (including fractional delayed linear operators and Grammian matrices) and local assumptions on nonlinear terms. Finally, an example is given to illustrate our theory.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Urvashi Arora ◽  
V. Vijayakumar ◽  
Anurag Shukla ◽  
Kottakkaran Sooppy Nisar ◽  
Shahram Rezapour ◽  
...  

AbstractIn our manuscript, we extend the controllability outcomes given by Bashirov (Math. Methods Appl. Sci. 44(9):7455–7462, 2021) for a family of second-order semilinear control system by formulating a sequence of piecewise controls. This approach does not involve large estimations which are required to apply fixed point theorems. Therefore, we avoid the use of fixed point theory and the contraction mapping principle. We establish that a second-order semilinear system drives any starting position to the required final position from the domain of the system. To achieve the required results, we suppose that the linear system is exactly controllable at every non-initial time period, the norm of the inverse of the controllability Grammian operator increases as the time approaches zero with the slower rate in comparison to the reciprocal of the square function, and the nonlinear term is bounded. Finally, an example has been presented to validate the results.


Sign in / Sign up

Export Citation Format

Share Document