Convolutional Neural Network Considering the Effects of Noise for Bearing Fault Diagnosis

Author(s):  
Ilyoung Han ◽  
Jangbom Chai ◽  
Chanwoo Lim ◽  
Taeyun Kim

Abstract Convolutional Neural Network (CNN) is, in general, good at finding principal components of data. However, the characteristic components of the signals could often be obscured by system noise. Therefore, even though the CNN model is well-trained and predict with high accuracy, it may detect only the primary patterns of data which could be formed by system noise. They are, in fact, highly vulnerable to maintenance activities such as reassembly. In other words, CNN models could misdiagnose even with excellent performances. In this study, a novel method that combines the classification using CNN with the data preprocessing is proposed for bearing fault diagnosis. The proposed method is demonstrated by the following steps. First, training data is preprocessed so that the noise and the fault signature of the bearings are separated. Then, CNN models are developed and trained to learn significant features containing information of defects. Lastly, the CNN models are examined and validated whether they learn and extract the meaningful features or not.

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Hang Yin ◽  
Zhongzhi Li ◽  
Jiankai Zuo ◽  
Hedan Liu ◽  
Kang Yang ◽  
...  

In recent years, intelligent fault diagnosis technology with deep learning algorithms has been widely used in industry, and they have achieved gratifying results. Most of these methods require large amount of training data. However, in actual industrial systems, it is difficult to obtain enough and balanced sample data, which pose challenges in fault identification and classification. In order to solve the problems, this paper proposes a data generation strategy based on Wasserstein generative adversarial network and convolutional neural network (WG-CNN), which uses generator and discriminator to conduct confrontation training, expands a small sample set into a high-quality dataset, and uses one-dimensional convolutional neural network (1D-CNN) to learn sample characteristics and classify different fault types. Experimental results over the standard Case Western Reserve University (CWRU) bearing fault diagnosis benchmark dataset showed that the proposed method has obvious and satisfactory fault diagnosis effect with 100% classification accuracy for few-shot learning. In different noise environments, this method also has excellent performance.


Measurement ◽  
2020 ◽  
Vol 157 ◽  
pp. 107667 ◽  
Author(s):  
Ying Zhang ◽  
Kangshuo Xing ◽  
Ruxue Bai ◽  
Dengyun Sun ◽  
Zong Meng

Sign in / Sign up

Export Citation Format

Share Document