A Simulation of Small Break Loss of Coolant Accident (SB-LOCA) in AP1000 Nuclear Power Plant Using RELAP5-MV

Author(s):  
Eltayeb Yousif ◽  
Zhang Zhijian ◽  
Tian Zhao-fei ◽  
A. M. Mustafa

To ensure effective operation of nuclear power plants, it is very important to evaluate different accident scenarios in actual plant conditions with different codes. In the field of nuclear safety, Loss of Coolant Accident (LOCA) is one of the main accidents. RELAP-MV Visualized Modularization software technology is recognized as one of the best estimated transient simulation programs of light water reactors, and also has the options for improved modeling methods, advanced programming, computational simulation techniques and integrated graphics displays. In this study, transient analysis of the primary system variation of thermo-hydraulics parameters in primary loop under SB-LOCA accident in AP1000 nuclear power plant (NPP) is carried out by Relap5-MV thermo-hydraulics code. While focusing on LOCA analysis in this study, effort was also made to test the effectiveness of the RELAP5-MV software already developed. The accuracy and reliability of RELAP5-MV have been successfully confirmed by simulating LOCA. The calculation was performed up to a transient time of 4,500.0s. RELAP5-MV is able to simulate a nuclear power system accurately and reliably using this modular modeling method. The results obtained from RELAP5 and RELAP5-MV are in agreement as they are based on the same models though in comparison with RELAP5, RELAP5-MV makes simulation of nuclear power systems easier and convenient for users most especially for the beginners.

1977 ◽  
Vol 99 (4) ◽  
pp. 650-656
Author(s):  
V. E. Schrock ◽  
G. J. Trezek ◽  
L. R. Keilman

Spray ponds have become an attractive method of providing the “ultimate heat sink”, i.e., the assured means of dissipating heat from a nuclear power plant. Two redundant spray ponds were the choice for this service in the Rancho Seco Nuclear Generating Station owned by Sacramento Municipal Utility District. This paper describes the results of full scale field tests of the Rancho Seco ponds which were conducted to verify the thermal performance, drift loss characteristics, and the capability to sustain the cooling requirements for a period of 30 days following a loss-of-coolant accident (LOCA). Correlations of local and average nozzle efficiency and of the drift loss are presented. A computer code was developed for the transient thermal performance of the pond. After verification the code was used to predict performance following LOCA under adverse meteorological conditions based on weather records.


2015 ◽  
Vol 285 ◽  
pp. 1-14 ◽  
Author(s):  
Asko Arkoma ◽  
Markku Hänninen ◽  
Karin Rantamäki ◽  
Joona Kurki ◽  
Anitta Hämäläinen

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Eltayeb Yousif ◽  
Zhijian Zhang ◽  
Zhaofei Tian ◽  
Hao-ran Ju

Many reactor safety simulation codes for nuclear power plants (NPPs) have been developed. However, it is very important to evaluate these codes by testing different accident scenarios in actual plant conditions. In reactor analysis, small break loss of coolant accident (SBLOCA) is an important safety issue. RELAP5-MV Visualized Modularization software is recognized as one of the best estimate transient simulation programs of light water reactors (LWR). RELAP5-MV has new options for improved modeling methods and interactive graphics display. Though the same models incorporated in RELAP5/MOD 4.0 are in RELAP5-MV, the significant difference of the latter is the interface for preparing the input deck. In this paper, RELAP5-MV is applied for the transient analysis of the primary system variation of thermal hydraulics parameters in primary loop under SBLOCA in AP1000 NPP. The upper limit of SBLOCA (10 inches) is simulated in the cold leg of the reactor and the calculations performed up to a transient time of 450,000.0 s. The results obtained from RELAP5-MV are in good agreement with those of NOTRUMP code obtained by Westinghouse when compared under the same conditions. It can be easily inferred that RELAP5-MV, in a similar manner to RELAP5/MOD4.0, is suitable for simulating a SBLOCA scenario.


Sign in / Sign up

Export Citation Format

Share Document