The Simulation Research of Noncondensable Gas to Condensation in Secondary Side Condenser of Floating Nuclear Power Plant Based on RELAP5

Author(s):  
Si-wei Yan ◽  
Chun-mei Li ◽  
Tie-bo Liang ◽  
Jing Zhao ◽  
Cheng-ming Hao ◽  
...  

Similar to conventional nuclear power plant, condensate water subcooling is a common problem in secondary coolant of floating nuclear power plant, which is caused by many reasons. In this article, RELAP5 is used to simulate the phenomenon of condensate water subcooling caused by noncondensable gas. The influence of noncondensable gas to condenser pressure, subcooling temperature, heat transfer rate, terminal temperature difference, cooling water temperature rise is presented. The results obtained through this study have shown that the model with non-condensable gas in steam can simulate condensate water subcooling, and reveal the discipline of condenser heat transfer characteristics as a function of noncondensable gas content.

2020 ◽  
Vol 329 ◽  
pp. 03049
Author(s):  
Aleksey Babushkin ◽  
Sergey Skubienko ◽  
Ludmila Kinash

In this study, the influence of the cooling water temperature on the thermal efficiency of a conceptual pressurized-water reactor nuclear- power plant is studied. The change in the cooling water temperature can be experienced due to the seasonal changes in climatic conditions at plant site. The article presents the results of technical and economic parameters study of nuclear power unit’s operation under increased vacuum value. Investigated seasonal variations of cooling water temperature, cooling water temperature influence on the vacuum temperature in the turbine condenser, and changing the basic technical and economic performance of nuclear power station. The mathematical model of calculation the nuclear power plant operation for a 1000 MW power unit was developed.


2020 ◽  
Vol 1549 ◽  
pp. 052003
Author(s):  
Qiaojun Wu ◽  
Guangchu He ◽  
Hongyong Wen ◽  
Xinpeng Lin ◽  
Shengliang He ◽  
...  

Author(s):  
Qiaojun Wu ◽  
Guangchu He ◽  
Hongyong Wen ◽  
Xinpeng Lin ◽  
Shengliang He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document