water jet
Recently Published Documents


TOTAL DOCUMENTS

3460
(FIVE YEARS 1238)

H-INDEX

50
(FIVE YEARS 19)

2022 ◽  
Vol 8 ◽  
pp. 202-216
Author(s):  
Yiqun Zhang ◽  
Xiaoya Wu ◽  
Xiao Hu ◽  
Bo Zhang ◽  
Jingsheng Lu ◽  
...  

2022 ◽  
Vol 50 ◽  
pp. 101810
Author(s):  
Subodh Khullar ◽  
Krishna M. Singh ◽  
Michel J. Cervantes ◽  
Bhupendra K. Gandhi

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Lihuan Chen ◽  
Muzheng Cheng ◽  
Yi Cai ◽  
Liwen Guo ◽  
Dianrong Gao

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.


2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Shang Yang ◽  
Xuehui Li ◽  
Jun Wang ◽  
Shuhao Yang ◽  
Zhen Shen ◽  
...  

To solve the problem of strong ground pressure behaviour under a residual coal pillar in the overlying goaf of a close-distance coal seam, this paper proposes the technology of weakening and relieving the residual coal pillar in the overlying goaf by a high-pressure water jet. Based on the geological occurrence of the No. 3 coal seam and mountain No. 4 coal seam in the Yanzishan coal mine, the high-pressure water jet pressure relief technology of residual coal pillars in the overlying goaf of close-distance coal seams was studied by theoretical analysis and field industrial tests. First, the elastic-plastic zone of the residual coal pillar and the stress distribution law of the floor are obtained by theoretical analysis, and the influence degree of the residual coal pillar on the support of the lower coal seam working face is revealed. Then, a high-pressure water jet combined with mine pressure is proposed to weaken the residual coal pillar. Finally, through the residual coal pillar hydraulic cutting mechanical model and “double-drilling double-slot” model, the high-pressure water jet drilling layout parameters are determined, and an industrial field test is carried out. The single knife cutting coal output and 38216 working face hydraulic support monitoring data show that high-pressure hydraulic slotting can weaken the strength of the coal body to a certain extent, destroy the integrity of the residual coal pillar, cut off the load transmission path of the overlying strata, and reduce the working resistance of the hydraulic support under the residual coal pillar to a certain extent, which is beneficial to the safe mining of the working face.


2022 ◽  
Vol 934 ◽  
Author(s):  
G.-Y. Yuan ◽  
B.-Y. Ni ◽  
Q.-G. Wu ◽  
Y.-Z. Xue ◽  
D.-F. Han

Ice breaking has become one of the main problems faced by ships and other equipment operating in an ice-covered water region. New methods are always being pursued and studied to improve ice-breaking capabilities and efficiencies. Based on the strong damage capability, a high-speed water jet impact is proposed to be used to break an ice plate in contact with water. A series of experiments of water jet impacting ice were performed in a transparent water tank, where the water jets at tens of metres per second were generated by a home-made device and circular ice plates of various thicknesses and scales were produced in a cold room. The entire evolution of the water jet and ice was recorded by two high-speed cameras from the top and front views simultaneously. The focus was the responses of the ice plate, such as crack development and breakup, under the high-speed water jet loads, which involved compressible pressure ${P_1}$ and incompressible pressure ${P_2}$ . According to the main cause and crack development sequence, it was found that the damage of the ice could be roughly divided into five patterns. On this basis, the effects of water jet strength, ice thickness, ice plate size and boundary conditions were also investigated. Experiments validated the ice-breaking capability of the high-speed water jet, which could be a new auxiliary ice-breaking method in the future.


Author(s):  
Hong-xiang Zheng ◽  
Yun Luo ◽  
Jing-Yu Zang ◽  
Qian Zhang

Abstract Water jet peening can effectively improve the fatigue strength of metal materials, and the outlet shape of nozzle greatly affects the effect of water jet peening. In this paper, the effects of nozzle outlet shape on water jet velocity and impact pressure is studied by numerical simulation, and the jet velocity and dynamic pressure for different standoff distances are also discussed. The results show that the water jets of square, circular and triangular nozzles are highly concentrated, and the water jet of elliptical nozzles is the most divergent. The axial velocity attenuation of the square nozzle along the axis is slower than that of the other three nozzles. The water axial velocity of the elliptical nozzle attenuates fastest and the length of the core segment of the water jet is the smallest. Within a certain axial distance, the dynamic pressure area in the central area of the elliptical water jet is obviously larger than that of the other three nozzles, and the effective treatment range is large, which is more suitable for the welding surface strengthening operation.


Author(s):  
ABHIMANYU K. CHANDGUDE ◽  
SHIVPRAKASH B. BARVE

This paper aims to develop a predictive model and optimize the performance of the abrasive water jet machining (AWJM) during machining of carbon fiber-reinforced plastic (CFRP) epoxy laminates composite through a unique approach of artificial neural network (ANN) linked with the nondominated sorting genetic algorithm-II (NSGA-II). Initially, 80 AWJM experimental runs were carried out to generate the data set to train and test the ANN model. During the experimentation, the stand-off distance (SOD), water pressure, traverse speed and abrasive mass flow rate (AMFR) were selected as input AWJM variables and the average surface roughness and kerf width were considered as response variables. The established ANN model predicted the response variable with mean square error of 0.0027. Finally, the ANN coupled NSGA-II algorithm was applied to determine the optimum AWJM input parameters combinations based on multiple objectives.


Sign in / Sign up

Export Citation Format

Share Document