A Numerical Study of the Plate Heat Exchanger With Compound Corrugations in the Condition of Low Reynolds Number and High Prandtl Number

Author(s):  
Xing Cao ◽  
Wenjing Du ◽  
Guanmin Zhang ◽  
Lin Cheng

In general the conventional plate heat exchanger has good heat transfer performance on the one hand and high pressure drop on the other hand. In order to deal with this dilemma, a novel plate heat exchanger with compound corrugations is proposed in this paper. Comparisons with the traditional plate heat exchanger indicate that the new heat exchanger can reduce flow resistance and simultaneously improve its heat transfer performance. The heat-transfer oil with a relatively high dynamic viscosity is selected as the working fluid. The performance in the newly-proposed plate heat exchanger with compound corrugations in the condition of low Reynolds number and high Prandtl number is numerically investigated. In the process of numerical simulations, variations are made on one geometric parameter of the plates and keep invariant for the others. Through comparisons on the j-factor, the friction factor and their ratio j/f for various plate geometries, the influence of geometry parameters on heat transfer performance, flow resistance characteristics and comprehensive heat exchanger performance is thoroughly examined. Based on numerical results, the geometric parameters which have significant impact on heat transfer and flow resistance of the proposed plate heat exchanger are determined. And the Nusselt number and friction factor correlations of the plate heat exchanger with compound corrugations are obtained, which are applicable for the laminar flow mode when the working fluid is with low Reynolds number and high Prandtl number.

2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3601-3612
Author(s):  
Dan Zheng ◽  
Jin Wang ◽  
Yu Pang ◽  
Zhanxiu Chen ◽  
Bengt Sunden

Experimental research was conducted to reveal the effects of nanofluids on heat transfer performance in a double-tube heat exchanger. With nanoparticle weight fraction of 0.5-2.0% and Reynolds number of 4500-14500, the flow resistance and heat transfer were analyzed by using six nanofluids, i.e., CuO-water, Al2O3-water, Fe3O4-water, ZnO-water, SiC-water, SiO2-water nanofluids. Results show that SiC-water nanofluid with a weight concentration of 1.5% provides the best improvement of heat transfer performance. 1.0% CuO-water and 0.5% SiO2-water nanofluids have lower friction factors in the range of Reynolds number from 4500-14500 compared to the other nanofluids. Based on test results of heat transfer performance and flow resistance, the 1.0% CuO-water nanofluid shows a great advantage due to a relatively high heat transfer performance and a low friction factor. Finally, empirical formulae of Nusselt numbers for various nanofluids were established based on experimental data tested in the double-tube heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document