Study on the Effective Thermal Conductivity of Macro, Mirco and Nano Porous Materials in the Light of the Knudsen Conduction/Radiation Coupling Effect

Author(s):  
Ulrich Gross ◽  
Khaled Raed

Thermal transport phenomena in porous media are characterized by conduction through solid matrix and filling gas, and also by radiation. The gas is dispersed in the porous system depending on the pore size distribution. In each pore, the gas contributes to the heat transfer between the pore surfaces. This effect is strongly influenced by pore size, gas atmosphere, accommodation coefficient and other factors. A recent publication of the present authors focused on modeling the change of the effective thermal conductivity when the gas atmosphere is changed. In the current contribution, the effect of pore size distribution on heat transfer in macro, micro, and nano insulation materials is presented. Samples were chosen from five different highly porous materials with different pore size distribution within the macro, micro, and nano classes. Porosity and pore size distribution of the samples were chosen to get a clear characterization of the materials. The effective thermal conductivity was measured by applying the radial heat flow method at temperatures up to 1000 °C. Evaluating Knudsen effect from the pore size distribution alone does not give plausible explanation for the measured thermal conductivity. However, it is important to consider the kind of connections between the pores. In case of nano materials, the radiation effect proves to be strongly dependent on the Knudsen number.

2008 ◽  
Vol 607 ◽  
pp. 39-41
Author(s):  
Jerzy Kansy ◽  
Radosław Zaleski

A new method of analysis of PALS spectra of porous materials is proposed. The model considers both the thermalization process of positronium inside the pores and the pore size distribution. The new model is fitted to spectra of mesoporous silica MCM-41 and MSF. The resulting parameters are compared with parameters obtained from fitting the “conventional” models, i.e. a sum of exponential components with discrete or/and distributed lifetimes.


2018 ◽  
Vol 37 (1) ◽  
pp. 412-428
Author(s):  
Feng Zhu ◽  
Wenxuan Hu ◽  
Jian Cao ◽  
Biao Liu ◽  
Yifeng Liu ◽  
...  

Nuclear magnetic resonance cryoporometry is a newly developed technique that can characterize the pore size distribution of nano-scale porous materials. To date, this technique has scarcely been used for the testing of unconventional oil and gas reservoirs; thus, their micro- and nano-scale pore structures must still be investigated. The selection of the probe material for this technique has a key impact on the quality of the measurement results during the testing of geological samples. In this paper, we present details on the nuclear magnetic resonance cryoporometric procedure. Several types of probe materials were compared during the nuclear testing of standard nano-scale porous materials and unconventional reservoir geological samples from Sichuan Basin, Southwest China. Gas sorption experiments were also carried out on the same samples simultaneously. The KGT values of the probe materials octamethylcyclotetrasiloxane and calcium chloride hexahydrate were calibrated using standard nano-scale porous materials to reveal respective values of 149.3 Knm and 184 Knm. Water did not successfully wet the pore surfaces of the standard controlled pore glass samples; moreover, water damaged the pore structures of the geological samples, which was confirmed during two freeze-melting tests. The complex phase transition during the melting of cyclohexane introduced a nuclear magnetic resonance signal in addition to that from liquid in the pores, which led to an imprecise characterization of the pore size distribution. Octamethylcyclotetrasiloxane and calcium chloride hexahydrate have been rarely employed as nuclear magnetic resonance cryoporometric probe materials for the testing of an unconventional reservoir. Both of these materials were able to characterize pore sizes up to 1 μm, and they were more applicable than either water or cyclohexane.


2008 ◽  
Vol 368-372 ◽  
pp. 1146-1148
Author(s):  
Feng Cao ◽  
C.Y. Wang ◽  
P.S. Tang ◽  
C.Y. Lu ◽  
H.F. Chen ◽  
...  

The silica-alumina sol bonding agent, prepared by the sol gel route from ethyl silicate and aluminium isopropanol, was utilized in the refractory castables. The influence of structure on the heat transfer has been investigated using different sorts of refractory matrix. The results indicated that the heat conductivity of sol-gel bonded castables was considerably affected by their structure. The phase composition of matrix, porosity, pore size distribution and pore size structure were the most important factors. Thermal conductivity has been measured from the ambient temperature up to 1250 °C. The influence of crystalline phases and the glassy phase formation and the influence of the pore size distribution on the thermal conductivity were also described in this work.


Sign in / Sign up

Export Citation Format

Share Document