Differential Quadrature Element Method for the Analysis of Vibration of Frame Structures Having Nonprismatic Members Considering Warping Torsion

2000 ◽  
Author(s):  
Chang-New Chen

Abstract The differential quadrature element method (DQEM) and the extended differential quadrature (EDQ) have been proposed by the author. The EDQ is used to the DQEM vibration analysis frame structures. The element can be a nonprismatic beam considering the warping due to torsion. The EDQ technique is used to discretize the element-based differential eigenvalue equations, the transition conditions at joints and the boundary conditions on domain boundaries. An overall discrete eigenvalue system can be obtained by assembling all of the discretized equations. A numerically rigorous solution can be obtained by solving the overall discrete eigenvalue system. Mathematical formulations for the EDQ-based DQEM vibration analysis of nonprismatic structures considering the effect of warping torsion are carried out. By using this DQEM model, accurate results of frame problems can efficiently be obtained.

1999 ◽  
Vol 121 (2) ◽  
pp. 204-208 ◽  
Author(s):  
F.-L. Liu ◽  
K. M. Liew

A new numerical technique, the differential quadrature element method (DQEM), has been developed for solving the free vibration of the discontinuous Mindlin plate in this paper. By the DQEM, the complex plate domain is decomposed into small simple continuous subdomains (elements) and the differential quadrature method (DQM) is applied to each continuous subdomain to solve the problems. The detailed formulations for the DQEM and the connection conditions between each element are presented. Several numerical examples are analyzed to demonstrate the accuracy and applicability of this new method to the free vibration analysis of the Mindlin plate with various discontinuities which are not solvable directly using the differential quadrature method.


1999 ◽  
Author(s):  
Chang-New Chen

Abstract The differential quadrature element method (DQEM) and the extended differential quadrature (EDQ) have been proposed by the author. The EDQ is used to the differential quadrature element analysis of the frame problems. The element can be a nonprismatic beam. The EDQ technique is used to discretize the element-based governing differential equations, the transition conditions at joints and the boundary conditions on domain boundaries. An overall algebraic system can be obtained by assembling all of the discretized equations. A numerically rigorous solution can be obtained by solving the global algebraic system. Mathematical formulations for the EDQ-based DQEM frame analysis are carried out. By using this DQEM model, accurate results of frame problems can efficiently be obtained. Numerical results demonstrate this DQEM model.


Sign in / Sign up

Export Citation Format

Share Document