Modified Stewart Platform for Spacecraft Thruster Vector Control

Author(s):  
Mehrdad N. Ghasemi-Nejhad ◽  
Kathleen M. Doherty

Adaptive or intelligent structures which have the capability for sensing and responding to their environment promise a novel approach to satisfying the stringent performance requirements of future space missions. This paper introduces an intelligent modified Stewart platform as an adaptive thruster mount structure with precision positioning and active vibration suppression capabilities for use in space satellites as an intelligent thruster vector control platform. The intelligent thruster mount would utilize piezoelectric sensors and actuators for precision positioning and active vibration suppression to provide fine-tuning of position tolerance for thruster alignment and low transmissibility of vibration to the satellite structure. Similar intelligent platform, introduced here, may be used for sensitive equipment aboard of the spacecraft to suppress the vibration that resonates throughout the spacecraft structure during a thruster firing, solar panel boom opening/reorientation, etc. This vibration renders sensitive optical or measurement equipment non-operational until the disturbance has dissipated. This intelligent system approach would greatly enhance mission performance by fine tuning attitude control, potentially eliminating the non-operational period as well as minimizing fuel consumption utilized for position correction. The configuration of the intelligent thruster mount system is that of a modified Stewart platform. This system is an intelligent tripod with two in-plane rotational degrees of freedom (2-DOF) for the top device-plate. Precision positioning of this structure is achieved using active members that extend or contract to tilt the upper device-plate where the thruster is mounted. An inverse analysis of a modified Stewart platform is employed to determine the required axial displacement of the active struts for the desired angular tilt of the upper device-plate. The active struts can participate in precision positioning as well as vibration suppression of the upper device-plate where the thruster, i.e., the source of the unwanted vibrations and misalignment, is mounted. The proposed Thruster Vector Control (TVC) intelligent platform offers a promising method for achieving fine tuning of positioning tolerances of a thruster as well as minimizing the effects of the disturbances generated during thruster firing in spacecraft such as a satellite.

Aerospace ◽  
2004 ◽  
Author(s):  
Mehrdad N. Ghasemi Nejhad

Adaptive or intelligent structures which have the capability for sensing and responding to their environment promise a novel approach to satisfying the stringent performance requirements of future space missions. This research effort focuses on the development of an intelligent thruster mount structure with precision positioning and active vibration suppression capability for use in a space satellite. The intelligent thruster mount would utilize piezoelectric stacks and patches for precision positioning and vibration suppression to provide fine-tuning of position tolerance for thruster alignment and low transmissibility of vibration to the satellite structure. This vibration, if not suppressed, renders sensitive optical or measurement equipment non-operational until the disturbance has dissipated. This intelligent system approach would greatly enhance mission performance by fine tuning attitude control, potentially eliminating the non-operational period as well as minimizing fuel consumption utilized for position correction. The configuration of the intelligent thruster mount system is that of a modified Stewart platform. Precision positioning of this structure is achieved using active composite strut members that use piezoelectric stack actuators and extend or contract to tilt the top device-plate where the thruster is mounted. The geometric relationship between the Stewart platform and the modified Stewart platform is described, and an inverse kinematics analysis of the modified Stewart platform has been developed and is used to determine the required axial displacement of the active struts for the desired angular tilt of the top device-plate. The active struts can participate in precision positioning as well as vibration suppression of the top device-plate where the thruster, i.e., the source of the unwanted vibrations and misalignment, is mounted. The proposed Thrust Vector Control (TVC) intelligent platform offers a promising method for achieving fine tuning of positioning tolerances of a thruster as well as minimizing the effects of the disturbances generated during thruster firing in spacecraft such as a satellite.


2019 ◽  
pp. 228-234
Author(s):  
A.V. Fedotov

In order to design the most effective systems of vibration control of a distributed elastic object, it is necessary to have a model of this object, which would allow one to obtain the control results numerically without experiment. This gives an opportunity to compare the results of different control systems with each other and choose the most efficient ones. The paper is concerned with numerical simulation of the results of experimental study on suppression of forced vibrations of a cantilever metal beam with piezoelectric sensors and actuators by finite element method. The new designed control systems are based upon the results of numerical simulation and turn out to be more effective than those tested in the experiment. The numerical results previously received for modal control systems were significantly improved by using the optimization procedure, which allows one to select the optimal parameters of the filters used in the feedback loops of the designed control systems.


2021 ◽  
Author(s):  
milad alipour ◽  
Maryam Malekzadeh ◽  
alireza ariaei

Abstract In this article, a novel multi-purpose modified fractional-order nonsingular terminal sliding mode (MFONTSM) controller is designed for the flexible spacecraft attitude control and appendages passive vibration suppression, assuming the control torque saturation in the system dynamics. Furthermore, an active FONTSM controller is proposed separately to perform active vibration suppression of the flexible appendages using piezoelectric actuators. The fixed-time stability of the closed-loop system for both the passive and active controllers is analyzed and proved using the Lyapunov theorem. Finally, the performance of the proposed controllers has been tested in the presence of uncertainties, external disturbances, and the absence of the damping matrix in order to study the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document