harmonic load
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 82)

H-INDEX

28
(FIVE YEARS 5)

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 536
Author(s):  
Seokjae Heo ◽  
Seunguk Na ◽  
Moo-Won Hur ◽  
Sanghyun Lee

In this study, the shape of a vertical expansion module with a rotary-type damping device is proposed. The external energy dissipation capacity is confirmed through experiments and the performance of the module is simulated. It can be easily applied to high-rise structures, as the module is directly supported by the bearing walls without the need for a separate base system. Additionally, as the damper can be replaced, it is possible to enhance seismic performance even after construction. The simulation results show that the rotary-type damper is more effective in reducing the displacement, shear force, and moment than free and fixed joints. In the pushover analysis of a system modeled using the moment hinge of the rotary damper of the joint, the best response reduction effect is obtained when the yield moment of the hinge is defined as 1% of the frame plastic moment. As a result of the analysis of the multi-degree-of-freedom system considering a harmonic load, we determined that it is efficient for the hinge to yield after the displacement, and the acceleration response of the resonant structure reaches steady state during the installation. In the multi-degree-of-freedom system with slab joints added to the analytical model, the displacement response decreased gradually as the natural period of the structure decreased and the joint increased. This provides evidence that the damper does not affect the overall behavior of the structure. The most important design factor of the rotary-type friction damper, shown through the experiment, is the relationship between the frictional surface and the tightening force of the bolt.


Author(s):  
Fredrick Nkado ◽  
Franklin Nkado

Recently, the demand for electrical energy has increased more than energy production due to the growing population and industrialization. Therefore, the distributed generators integration (DGs) into the distribution system has been widely adopted. This work examines the effect of photovoltaic-based distributed generator (PV-DG) integration on power quality effect of a radial distribution system. Firstly, the capacity and optimum placement of the PV-DG units in the distribution network are determined by employing the particle swarm optimization (PSO) algorithm. Then, the impact of PV-DG integration on voltage harmonic distortion is analyzed by performing harmonic load flow analysis. Also, the P-V curve method is used to evaluate the effects of higher PV-DG penetration levels on loading margin and voltage magnitude. The simulation results show that as the PV-DG units’ penetration level increases, a greater level of harmonic distortion is injected, implying that the PV-DG units should only be integrated up to the network’s maximum capacity. Therefore, high harmonic distortion is produced when the PV-DG units are penetrated beyond this maximum penetration level, which has a negative impact on the system’s performance. The total voltage harmonic distortion is 4.17 % and 4.24 % at PCC1 and PCC2 at the highest penetration level, allowing the acceptable harmonic distortion limit. Also, grid-connected PV-DG units improve loading margin and voltage magnitude, according to the P-V curve results. The standard IEEE-33 bus distribution system is modelled in ETAP software and is used as a test system for this study.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zongling Zhang

Based on the nonlocal theory and the theory of saturated porous media, the mathematical and physical model and governing equations of the steady-state response of the incompressible nonlocal saturated poroelastic beam under vertical harmonic loading are established with assumption of the movement of the liquid-phase fluid only in the axial direction of the beam and considering the nonlocal effects such as particle size, pore size, and pore dynamic stress. The dynamic response of a saturated poroelastic cantilever beam with permeability at both ends under a vertical harmonic concentrated force at the free end is studied. In the frequency domain, the analytical expressions of deflection amplification factor and equivalent couple amplification factor of liquid fluid pressure are given. The effects of nonlocal coefficient τ, mechanical parameter α, and geometric parameter β on the deflection amplification factor and equivalent couple amplification factor at the midpoint of the nonlocal saturated poroelastic cantilever beam are studied. The results show that the steady-state vibration of the incompressible nonlocal saturated poroelastic cantilever beam has resonance. When the nonlocal effect is considered, the deflection amplification factor and the equivalent couple amplification factor are larger, so the influence of the nonlocal effect on the steady-state response of the beam should not be ignored. The geometric parameter β has significant effect on the peak positions of the curves of the deflection amplification factor and the equivalent couple amplification factor varying with frequency.


2021 ◽  
Vol 11 (4) ◽  
pp. 7311-7320
Author(s):  
I. C. Barutcu

Harmonic penetration can be problematic by the growing interconnection of Wind Turbines (WTs) in distribution networks. Since the active power outputs of WTs and loads in the distribution system have uncertainties, the optimal WT penetration level problem can be considered to have a stochastic nature. In this study, this problem is taken into account in the stochastic optimization method with the consideration of uncertainties in wind speed and distribution network load profile. Chance constraint programming is taken into account in the determination of optimal WT penetration levels by applying the Genetic Algorithm (GA) along with Monte Carlo Simulation (MCS). The harmonic power flow analysis based on the decoupled harmonic load flow approach is employed in the distorted distribution network. Chance constraints are considered for the harmonic issues such as the Total Harmonic Distortion of Voltage (VTHD), Individual Harmonic Distortion of Voltage (VIHDh), and Root Mean Square of Voltage (VRMS).


2021 ◽  
Author(s):  
Kamal Kishor Prajapati ◽  
Soumyajit Roy

Abstract Many engineering applications involve exerting moving harmonic load on a string like structure. Usually the interface between these structures and the moving load has some friction. A common example is a pantograph catenary system, which is used in locomotives for power collection. The aim of this paper is to develop a mathematical model of a simplified system consisting of infinitely long axially tensioned continuum and a moving harmonic load with friction acting at the interface. Equation of motion has been derived by resolving forces at that point. Subsequently the basic characteristics of the system are obtained by solving the model numerically. It is observed that the effect of friction obtained is negligibly low higher value of axial tension, but can significantly increase the string response at a particular range of coefficient of friction value when the axial tension is low.


2021 ◽  
Vol 16 (3) ◽  
pp. 220
Author(s):  
Dimas Okky Anggriawan ◽  
Aidin Amsyar ◽  
Aji Akbar Firdaus ◽  
Endro Wahjono ◽  
Indhana Sudiharto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document