Experimental and Finite Element Investigation of Cementless Cup/Bone Interface After Total Hip Arthroplasty

Author(s):  
Ivan Zivkovic ◽  
Farid Amirouche ◽  
Francisco Romero ◽  
Mark Gonzalez

Permanent fixation of a cementless total hip arthroplasty requires bone ingrowth into the femoral and acetabular components. Early micromotion at the acetabular cup/bone interface can preclude ingrowth threatening long term fixation. To better characterize micromotion of the interface under loading conditions, an experimental and finite element (FE) study was undertaken. In this study cadaver hemi-pelvises were implanted with cementless acetabular cups and subjected to cyclical axial load and torque. Detailed finite element model, validated with experimental results, was developed to further analyze the conditions affecting the initial stability and loosening of the interface for different loading conditions.

2013 ◽  
Vol 21 (5) ◽  
pp. 493-500 ◽  
Author(s):  
Matthias Lerch ◽  
Nelly Weigel ◽  
Henning Windhagen ◽  
Max Ettinger ◽  
Fritz Thorey ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1282 ◽  
Author(s):  
Saverio Affatato ◽  
Massimiliano Merola ◽  
Alessandro Ruggiero

A hip joint replacement is considered one of the most successful orthopedic surgical procedures although it involves challenges that must be overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime of the implant. The current replacement joint results are not fully satisfactory for these patients’ demands. As particle release is one of the main issues, pre-clinical experimental wear testing of total hip replacement components is an invaluable tool for evaluating new implant designs and materials. The aim of the study was to investigate the cup tensional state by varying the clearance between head and cup. For doing this we use a novel hard-on-soft finite element model with kinematic and dynamic conditions calculated from a musculoskeletal multibody model during the gait. Four different usual radial clearances were considered, ranging from 0 to 0.5 mm. The results showed that radial clearance plays a key role in acetabular cup stress-strain during the gait, showing from the 0 value to the highest, 0.5, a difference of 44% and 35% in terms of maximum pressure and deformation, respectively. Moreover, the presented model could be usefully exploited for complete elastohydrodynamic synovial lubrication modelling of the joint, with the aim of moving towards an increasingly realistic total hip arthroplasty in silico wear assessment accounting for differences in radial clearances.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
F. Amirouche ◽  
F. Romero ◽  
M. Gonzalez ◽  
L. Aram

Polyethylene wear after total hip arthroplasty may occur as a result of normal gait and as a result of subluxation and relocation with impact. Relocation of a subluxed hip may impart a moment to the cup creating sliding as well as compression at the cup liner interface. The purpose of the current study is to quantify, by a validated finite element model, the forces generated in a hip arthroplasty as a result of subluxation relocation and compare them to the forces generated during normal gait. The micromotion between the liner and acetabular shell was quantified by computing the sliding track and the deformation at several points of the interface. A finite element analysis of polyethylene liner stress and liner/cup micromotion in total hip arthroplasty was performed under two dynamic profiles. The first profile was a gait loading profile simulating the force vectors developed in the hip arthroplasty during normal gait. The second profile is generated during subluxation and subsequent relocation of the femoral head. The forces generated by subluxation relocation of a total hip arthroplasty can exceed those forces generated during normal gait. The induced micromotion at the cup polyethylene interface as a result of subluxation can exceed micromotion as a result of the normal gait cycle. This may play a significant role in the generation of backsided wear. Minimizing joint subluxation by restoring balance to the hip joint after arthroplasty should be explored as a strategy to minimize backsided wear.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianlin Zuo ◽  
Meng Xu ◽  
Xin Zhao ◽  
Xianyue Shen ◽  
Zhongli Gao ◽  
...  

AbstractWe aimed to evaluate whether there are differences in the rotation center, cup coverage, and biomechanical effects between conventional and anatomical technique. Computed tomography scans of 26 normal hips were used to simulate implantation of acetabular component. The hip rotation center and acetabular component coverage rate were calculated. Moreover, a finite element model of the hip joint was generated to simulate and evaluate the acetabular cup insertion. Micromotion and the peak stress distribution were used to quantify the biomechanical properties. The medial and superior shifts of the rotation center were 5.2 ± 1.8 mm and 1.6 ± 0.7 mm for the conventional reaming technique and 1.1 ± 1.5 mm and 0.8 ± 0.5 mm for anatomical technique, respectively. The acetabular component coverage rates for conventional reaming technique and anatomical technique were 86.8 ± 4% and 70.0 ± 7%, respectively. The micromotion of the cup with conventional reaming technique was greater than that with anatomical technique. The peak stress concentration was highest in the superior portion with conventional reaming technique, whereas with anatomical technique, there was no stress concentration. Paradoxically although the acetabular component coverage rate is larger with conventional reaming technique, anatomical technique provides less micromotion and stress concentration for initial cup stability. Thus, anatomical technique may be more suitable for acetabulum reaming during primary total hip arthroplasty.


2016 ◽  
Vol 11 (12) ◽  
pp. 2253-2271 ◽  
Author(s):  
Yoshiyuki Kagiyama ◽  
Itaru Otomaru ◽  
Masaki Takao ◽  
Nobuhiko Sugano ◽  
Masahiko Nakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document