Coalescence Criterion of Part-Through Wall Cracks in Steam Generator Tubes of Nuclear Power Plants

Author(s):  
Jeries Abou-Hanna ◽  
Timothy McGreevy ◽  
Saurin Majumdar ◽  
Amit J. Trivedi ◽  
Ashraf Al-Hayek

In scheduling inspection and repair of nuclear power plants, it is important to predict failure pressure of cracked steam generator tubes. Nondestructive evaluation (NDE) of cracks often reveals two neighboring cracks. If two neighboring part-through cracks interact, the tube pressure, under which the ligament between the two cracks fails, could be much different than the critical burst pressure of an individual equivalent part-through crack. The ability to accurately predict the ligament failure pressure, called “coalescence pressure,” is important. The coalescence criterion, established earlier for 100% through cracks using nonlinear finite element analyses [1–3], was extended to two part-through-wall axial collinear and offset cracks cases. The ligament failure is caused by local instability of the radial and axial ligaments. As a result of this local instability, the thickness of both radial and axial ligaments decreases abruptly at a certain tube pressure. Good correlation of finite element analysis with experiments (at Argonne National Laboratory’s Energy Technology Division) was obtained. Correlation revealed that nonlinear FEM analyses are capable of predicting the coalescence pressure accurately for part-through-wall cracks. This failure criterion and FEA work have been extended to axial cracks of varying ligament width, crack length, and cases where cracks are offset by axial or circumferential ligaments. The study revealed that rupture of the radial ligament occurs at a pressure equal to the coalescence pressure in the case of axial ligament with collinear cracks. However, rupture pressure of the radial ligament is different from coalescence pressure in the case of circumferential ligament, and it depends on the length of the ligament relative to crack dimension.

Author(s):  
Deok Hyun Lee ◽  
Do Haeng Hur ◽  
Myung Sik Choi ◽  
Kyung Mo Kim ◽  
Jung Ho Han ◽  
...  

Occurrences of a stress corrosion cracking in the steam generator tubes of operating nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, expansion transition, u-bend, ding, dent, bulge, etc. Therefore, information on the location, type and quantitative size of a geometric anomaly existing in a tube is a prerequisite to the activity of a non destructive inspection for an alert detection of an earlier crack and the prediction of a further crack evolution [1].


2006 ◽  
Vol 321-323 ◽  
pp. 426-429
Author(s):  
Deok Hyun Lee ◽  
Myung Sik Choi ◽  
Do Haeng Hur ◽  
Jung Ho Han ◽  
Myung Ho Song ◽  
...  

Most of the corrosive degradations in steam generator tubes of nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, an expansion transition, u-bend, ding, dent, bulge, etc. Therefore, accurate information on a geometric anomaly in a tube is a prerequisite to the activity of a non destructive inspection for a precise and earlier detection of a defect in order to prevent a failure during an operation, and also for a root cause analysis of a failure. In this paper, a newly developed eddy current technique of a three-dimensional profilometry is introduced and the proof for the applicability of the technique to a plant inspection is provided. The quantitative profile measurement using a new eddy current probe was performed on steam generator expansion mock-up tubes with various geometric anomalies typically observed in the operating power plants, and the accuracy of the measured data was compared with those from the laser profilometry.


2015 ◽  
Vol 10 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Xiaolei Wang ◽  
◽  
Dagang Lu ◽  

Containment vessels, which contain any radioactive materials that would be released from the primary system in an accident, are the last barrier between the environment and the nuclear steam supply system in nuclear power plants. Assessing the probability of failure for the containment building is essential to level 2 PSA studies of nuclear power plants. Degradation of containment vessels of some nuclear power plants has been observed in many countries, so it is important to study how the corrosion has adverse effects on the capacity of containment vessels. Conventionally, the reliability analysis of containment vessels can be conducted by using Monte Carlo Simulation (MCS) or Latin Hypercube Sampling (LHS) with the deterministic finite element analysis. In this paper, a 3D finite element model of an AP1000 steel containment vessel is constructed using the general-purpose nonlinear finite element analysis program ABAQUS. Then the finite element reliability method (FERM) based on the first order reliability method (FORM) is applied to analyze the reliability of the steel containment vessel, which is implemented by combining ABAQUS and MATLAB software platforms. The reliability and sensitivity indices of steel containment vessels under internal pressure with and without corrosion damage are obtained and compared. It is found that the FERM-based procedure is very efficient to analyze reliability and sensitivity of nuclear power plant structures.


2017 ◽  
Vol 323 ◽  
pp. 120-132 ◽  
Author(s):  
C. Goujon ◽  
Th. Pauporté ◽  
A. Bescond ◽  
C. Mansour ◽  
S. Delaunay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document