wear test
Recently Published Documents


TOTAL DOCUMENTS

1168
(FIVE YEARS 328)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 889
Author(s):  
Marek Milanowski ◽  
Alaa Subr ◽  
Stanisław Parafiniuk

The use of worn-out agricultural nozzles in pesticide application has a negative effect on the efficiency and cost of the application process. It also has an effect on environmental pollution due to an excessive amount of pesticide being applied when spraying with worn-out nozzles. In this paper, the resistance to wear of three different internal design hydraulic nozzles was ascertained. Changes in the flow rate and spray distribution as a result of this wear were also investigated. The wear test was done inside a closed system, and it was accelerated using an abrasive material to generate 100 h of wear. The tested nozzles were the Turbo TeeJet (TT)-twin chambered, Turbo Twinjet (TTj60)-dual outlet, and Drift Guard (DG)-pre-orifice. Wear rate, flow rate, and the virtual coefficient of variation (CVv) were measured at different wear intervals. The results showed that the TTj60 type was the most resistant to wear, followed by the TT type and DG. The latter two types showed an increase in the flow rate only in the first 45 h of wear. Virtual coefficient of variation (CVv) values were less than 10% after finishing the test (after 100 h of wear) for the three types of nozzles, which are acceptable values according to International Organization for Standardization (ISO) 16122-2, 2015.


2022 ◽  
Author(s):  
SURESHKUMAR P ◽  
suresh kumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
M. Ravichandran ◽  
...  

Abstract The present research study investigates the Mechanical, Physical, and Tribological properties of powder metallurgy (PM) produced AA6063 alloy reinforced with silicon nitride (Si3N4) and copper nitrate (CuN2O6). Incorporation of Si3N4 & CuN2O6 reinforcement in matrix material ranged from 6 to 12 % Si3N4 in a 6-step interval and 2 to 6 %CuN2O6 in a two-step interval. The characterizations were made on the PM-produced specimens using OM, EDS, XRD, and Hardness. The reinforcement particles were uniformly distributed, which was attributed to a homogeneous mixer of matrix and reinforcements. The test findings show that as the reinforcing percentage of the ceramic and inorganic compound increases, properties such as hardness and density rise considerably and monolithically. The existence of phases such as Si3N4 and CuN2O6 reinforcement in the AA6063 matrix was ensured by X-ray diffraction. The hardness of AA6063/12%Si3N4/6%CuN2O6 increased by 88% over the base alloy due to a mismatch in thermal expansion between the Al matrix and reinforcement, which causes massive internal stress, causing the aluminium matrix to plastically deform to accommodate the reduced volume expansion of Si3N4 and CuN2O6 particles. The dry sliding wear test was determined using the Pin-on-Disc method, and the results show that the composite is more wear-resistant. An orthogonal array and analysis of variance were utilized to evaluate the solution, including parameters using the Taguchi robust design technique. The weight percentage of the Si3N4/CuN2O6 compound and the relationship between weight % of reinforcement and applied load had the most significant impact on composite wear resistance. The produced composite's wear morphology was studied using images from a scanning electron microscope and energy dispersive spectroscopy.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liwu Wang ◽  
Yanfeng Han ◽  
Dongxing Tang ◽  
Jianlin Cai

Purpose The purpose of this paper is to verify the effectiveness of the proposed transient mixed lubrication and wear coupling model [mixed lubrication and wear (MLW) coupling model] under water lubricated conditions by comparing with the experimental results. Design/methodology/approach Water lubricated bearings are the key parts of the transmission system of an underwater vehicle and some surface ships. In this study, the friction and wear behaviors of rubber, nylon and polyether ether ketone (PEEK) samples with stainless steel underwater lubrication were compared by using ring-block contact structure on multifunctional friction and wear test bench-5000 friction and wear tester. Findings The results show that the transient wear depth and wear amount of PEEK, nylon and rubber samples under water lubrication are in good agreement with the calculated results of the theoretical model, which verifies the rationality and scientific nature of the MLW coupling model. Thus, the numerical model is applicable for the wear prediction of the journal bearing under water-lubricated conditions. Furthermore, numerical and experimental results reveal that the anti-wear performance among three water-lubricated materials can be ranked by: PEEK > nylon > rubber. Originality/value It is expected that this study can provide more information for experimental and numerical research of water-lubricated bearings under water-lubricated conditions.


Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Parikshit Tonge ◽  
Amit Roy ◽  
Payank Patel ◽  
Charles J. Beall ◽  
Pantcho Stoyanov

Solid lubricants, such as MoS2 have been widely used in the aerospace industry with the primary purpose of reducing the friction and wear of tribological interfaces. MoS2 based solid film lubricants are generally doped with other compounds, which can help overcome some of their limitations related to environmental conditions. For instance, compounds like Sb2O3 and Pb have been traditionally used to improve the endurance life of these lubricants. However, with the recent zest in transferring to eco-friendly lubricants, there is a strong push to eliminate Pb based compounds. The main purpose of this work is to better understand the influence of Pb based compounds on the tribological behavior of MoS2 based solid film lubricants as well as to critically evaluate the performance of Pb free lubrication strategies. More specifically, the baseline ‘non-green’ lubricant was doped with Pb compound and Sb2O3 and the Pb compound in the ‘Green’ alternative lubricant was replaced by more Sb2O3. The wear test was done using a ball-on-disk tribometer for specific loads and for 5000 cycles. Ex-situ analysis was conducted using Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), and micro-Raman to capture the interfacial processes of these lubricants at different loads. Overall, the non-green lubricant performed better in terms of the tribological behavior (i.e., lower friction and wear), which was attributed to the formation of a dense MoS2-based tribo-/transfer-film with the basal planes oriented in the parallel direction to the sliding. The finding on the interfacial phenomena provided critical insights into the development of novel green alternatives that may have the ability to replace Pb based compounds in the future for a sustainable environment.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Hamidreza Ghandvar ◽  
Mostafa Abbas Jabbar ◽  
Abdollah Bahador ◽  
Tuty Asma Abu Bakar ◽  
Nor Akmal Fadil ◽  
...  

In current study; the effect of various Gadolinium (Gd) additions on the microstructure and sliding wear behaviour of Al-15%Mg2Si composite before and after the hot extrusion process was examined. Optical microscopy (OM), scanning electron microscopy (SEM) equipped with EDX facility and X-ray diffraction (XRD) were used to characterize the microstructure. The results showed that with addition of 1.0 wt.% Gd to Al-15%Mg2Si composite, the primary Mg2Si particles size reduced from 44 µm to 23 µm and its morphology altered from dendritic to polygonal shape. Further refinement of primary Mg2Si particles was achieved after conducting hot extrusion which resulted in a decrease in its size to 19 µm with a transfer to near-spherical morphology. The Vickers hardness value increased from 55.6 HV in the as-cast and unmodified composite to 72.9 HV in the extruded 1.0% Gd modified composite. The wear test results revealed that composites treated with Gd possess higher wear resistance in comparison with those of without Gd. The highest wear resistance obtained with the lowest wear rates of 0.19 mm3/km and 0.14 mm3/km in the Al-15%Mg2Si-1.0% Gd before and after the hot extrusion, respectively. The high wear resistance of extruded Gd-modified Al-15%Mg2Si composite is due to the refinement of primary Mg2Si particles with uniform distribution in the composite matrix along with fragmentation of Gd intermetallic compounds.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhu Weixin ◽  
Kong Dejun

Abstract NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.


Author(s):  
Yahong Xue ◽  
Xudong Wang ◽  
Shicheng Yan ◽  
Jutao Wang ◽  
Haibo Zhou

Abstract As the self-lubricating layer of self-lubricating spherical plain bearings, fabric liner shows obvious heterogeneous anisotropic characteristics, so it is a technical difficulty to predict its wear properties. In this paper, the continuous wear of self-lubricating fabric liner was simulated based on the mesoscopic scale wear model. The macroscopic wear properties of the fabric liner were characterized by establishing a representative volume element (RVE), and subsequently imposing periodic boundary restrictions (PBCs) on periodic surfaces. In order to avoid excessive mesh distortion, voxel grids meshing method was used, and then continuous wear of the heterogeneous material was realized by adjusting node coordinates and combining nodes. Detailed comparison between simulation prediction results and wear test data of fabric liner was made. The good correlation of the results confirmed that the mesoscopic scale wear model could be used in accurately predict the tribological performance of fabric composite.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Madhu K S ◽  
Venkatesh C V ◽  
Sharath B N ◽  
Karthik S

Composites are often chosen for tribological applications due to its tailored material properties. The development of hybrid metal matrix composites and the study of their wear behavior has been a prominent focus of materials science research. Present paper deals with fabrication of Al-7029/B4C/Gr hybrid composite using stir casting. Particle distribution and material phase are identified by SEM and XRD. Hardness of the composite increased to 101 BHN while base alloy with 63 BHN. Pin-on-disc Tribometer used to carry wear test and the experimentation conducted by considering three input wear control parameters: 15–35 N (load), 1.5–3.5 m/s (speed) and 200–600 m (distance). Addition of 6%B4C/3%Gr, wear rate of hybrid composites reduced. ANOVA confirmed that load as the most influencing parameter on wear rate. RSM results correlates with mean effect plots of ANOVA and experiments and found that the results are in good compliance. SEM graphs of worn surface confirms that more wear occurred with increased load.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Jianbing Lv ◽  
Juan Huang ◽  
Hao Wu ◽  
Yang Zhang ◽  
Jingyu Qiu ◽  
...  

Microsurfacing is a standard preventive maintenance technology developed on the basis of slurry sealing technology. However, the high temperature and rainy season in Guangdong Province affect its expanded application because of its low water resistance and short service life. So, high-performance microsurfacing, a new microsurfacing technology, has been developed. The key to this technique is an appropriate proportion of water-based epoxy resin and waterborne epoxy curing agent, which could generate a chemical reaction to form a high-performance bonding network structure of space. And indoor wet-wheel wear test shows that its antiwear ability and resistance to water damage are evidently increased (to over 50%) compared with the conventional microsurfacing. Furthermore, from the long-term road performance results, the antisliding and water resistance performance of high-performance microsurfacing is much higher than the conventional technique.


Sign in / Sign up

Export Citation Format

Share Document