chemical cleaning
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 130)

H-INDEX

39
(FIVE YEARS 7)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Katja Götze ◽  
Roland Haseneder ◽  
Andreas Siegfried Braeuer

Focusing on the selective extraction of the critical raw materials indium and germanium from real bioleaching solutions, extended studies have been carried out using Europe’s first underground hybrid membrane pilot plant (TRL6). In order to transfer former laboratory experiments to pilot scale, NF99 (Alfa Laval) was used for the evaluation of membrane permeance and ion retention. A performance test of microfiltration (MF) and nanofiltration (NF) showed high permeances with low root-mean-square deviation under feed variation (5.2% for MF, 4.7% for NF). Depending on the feed load, a significant permeance drop of up to 57% for MF (3 bar) and 26% for NF (10 bar, 1.1 m s−1) was observed. The NF retention performance showed that, without regular chemical cleaning, the selectivity between the target elements degraded. By introducing acidic-basic cleaning steps, it was possible to keep the retention behavior at an approximately constant level (In 91.0 ± 1.3%; Ge 18.2 ± 5.5%). In relation to the specified target, the best results could be achieved at low pressure (7.5 bar) and a maximum overflow velocity of 1.1 m s−1, with a retention of 88.4% for indium and 8.8% for germanium. Moreover, the investigations proved the functionality and long-term stability of the underground membrane device.


2021 ◽  
Vol 11 (24) ◽  
pp. 11832
Author(s):  
Ji-Eon Kim ◽  
Pyung-Su Kim ◽  
Jong-Myoung Lee ◽  
Han-Seop Choe ◽  
Jong-Do Kim

While producing gas fuel supply pipes for duel fuel (DF) engines, a welding process is essential. Accordingly, specimen management before and after welding is crucial to obtain highly reliable weldments. In this study, we developed an environmentally friendly laser cleaning technology to address a toxic work environment and environmental pollution problems caused by chemical cleaning technology utilized in post-welding treatment of gas fuel supply for DF engines. An experiment was conducted by implementing surface laser cleaning of the butt and fillet weldment specimens according to process parameters. Conditions of process parameters were identified for facilitating laser cleaning and used in prototype production. The prototypes were processed through laser and chemical cleaning, and the quality of the end products was compared. The results indicated that the proposed method satisfactorily cleans the prototype surface without generating a toxic work environment and environmental pollution problems. Moreover, the roughness of approximately 5 μm was achieved on the laser cleaned surface. This is considered to be able to increase the adhesion of the paint compared to the smooth chemical cleaned surface during the painting for anticorrosion of the product.


Author(s):  
Xiaolin Jia ◽  
Kuiling Li ◽  
Baoqiang Wang ◽  
ZhiChao Zhao ◽  
Deyin Hou ◽  
...  

Abstract As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention for the advantages of treating hypersaline wastewaters, especially the concentrate from reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but the membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer that consist of organic matters and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, critic acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


2021 ◽  
Vol 44 ◽  
pp. 102411
Author(s):  
Yuri Abner Rocha Lebron ◽  
Victor Rezende Moreira ◽  
Paula Rocha da Costa ◽  
Aline Ribeiro Alkmin ◽  
Luzia Sergina de França Neta ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 253-272
Author(s):  
Shafiq Mohd Hizam ◽  
Muhammad Roil Bilad ◽  
Nik Abdul Hadi Md Nordin ◽  
Norazanita Shamsuddin

During crude oil and natural gas extraction from a reservoir, a large amount of water is also produced. The water fraction contains oil, grease, organic and inorganic constituents, called produced water (PW). Over the years, efficient treatment of PW has been concerned. PW has been treated with various technologies, namely floatation, filtration, coagulation/flocculation, or biological processes. Those technologies were assembled to achieve discharge standards while minimizing the cost. Exploration of membrane-based technologies for the treatment of PW has recently been reported, including the emerging forward osmosis (FO) process. This paper reviews the research progress on the FO process for PW treatment. A brief introduction to the traditional treatment technologies is first provided. Next, the basics of the FO process and research progress on the application of FO on PW treatment are discussed. Finally, techniques for fouling control in FO are reviewed, namely osmotic backwashing, ultrasound, chemical cleaning, and air sparging.


2021 ◽  
Vol 1167 ◽  
pp. 101-113
Author(s):  
Mohamed Moustafa Ibrahim ◽  
Hamdy Mohamed Mohamed

Ancient archaeological sites contain numerous pottery objects that suffered from different deterioration factors. This study aims to use different analytical methods to study the chemical and mineralogical composition and identification of deterioration aspects of some ancient Egyptian pottery jars from Saqqara excavation. Thus, to explain the deterioration factors' mechanisms and apply the proper conservation methods to the deteriorated pottery jars. AutoCAD, digital microscope, scanning electron microscope (SEM-EDX), and x-ray diffraction (XRD) were used to clarify the preservation states of pottery jars. The results of the investigation revealed that the selected jars suffered from different cracks, salts crystallization, some surface black spots, separation of the slip layer, and heterogeneity in the grains size. XRD analysis revealed that quartz, diopside, illite, muscovite, orthoclase, anorthite, and hematite are the main components of the jars. SEM-EDX analysis showed high concentrations of chlorides and sulfate salts, besides the presence of manganese oxide. Different treatments were performed for the pottery jars include mechanical and chemical cleaning. Additionally, the completion process was done by using a mixture of dental gypsum with grog. Moreover, the consolidation process was achieved by using paraloid B-72.


Sign in / Sign up

Export Citation Format

Share Document