Computational Aspects of Three-Dimensional Crack Growth Simulations

Author(s):  
Jianzheng Zuo ◽  
Xiaomin Deng ◽  
Michael A. Sutton

An important task in mixed-mode fracture analysis and prediction is the simulation of crack growth under mixed-mode conditions. To complete such a task, one must have (a) a computer code capable of handling the kinematics of general crack growth and determining the stress and deformation states during crack growth, and (b) a fracture criterion that can properly predict the onset and direction of crack growth. A current challenge is the simulation of mixed-mode crack growth under three-dimensional (3D) conditions, such as the growth of surface cracks, corner cracks, embedded cracks, and cracks with a curved crack surface and/or a curved crack front. This paper focuses on item (a) in the above discussion and describes the computational aspects of a simulation procedure, which can be used together with a given fracture criterion to simulate crack growth. For illustration purposes, a CTOD fracture criterion (e.g. [11]) will be used when needed. The associated algorithms for simulating arbitrary 3D crack growth under general loading conditions have been developed and successfully implemented by the authors in a custom, finite element based, crack growth analysis and simulation code—CRACK3D. In particular, this paper will present strategies for automatic re-meshing of regions around growing crack fronts in a 3D body, and will discuss verification examples.

Author(s):  
Dong-Liang Sun ◽  
Qiu-hua Rao ◽  
Shan-Yong Wang ◽  
Wei Yi ◽  
Qing-qing Shen

2009 ◽  
Vol 631-632 ◽  
pp. 109-114
Author(s):  
Sadik Kosker ◽  
Serkan Dag ◽  
Boray Yildirim

This study presents a three dimensional finite element method for mixed-mode fracture analysis of an FGM coating-bond coat-substrate structure. The FGM coating is assumed to contain an inclined semi-elliptical crack at the free surface. The trilayer structure is examined under the effect of transient thermal stresses. Strain singularity around the crack front is simulated by utilizing collapsed wedge-shaped singular elements. The modes I, II and III stress intensity factors are computed by applying the displacement correlation technique and presented as a function of time. Four different FGM coating types are examined in the parametric analyses which are metal-rich, ceramic-rich, linear variation and homogeneous coatings. The results provided illustrate the influences of the FGM coating type and crack inclination angle on the transient behavior of the mixed-mode stress intensity factors.


1983 ◽  
Vol 5 (1) ◽  
pp. 26 ◽  
Author(s):  
WW Feng ◽  
KL Reifsnider ◽  
GP Sendeckyj ◽  
TT Chiao ◽  
PL Lien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document