In-Situ Measurements of Water Transfer Due to Different Mechanisms in a PEM Fuel Cell

Author(s):  
Attila Husar ◽  
Andrew Higier ◽  
Hongtan Liu

Water management is of critical importance in a proton exchange membrane (PEM) fuel cell. Yet there are very limited studies of water transfer through the membrane and no data are available for water transfer due to individual mechanisms through the membrane electrode assembly (MEA) in an operational fuel cell. Thus it is the objective of this study to measure water transfer through the MEA due to different mechanisms through the membrane electrode assembly (MEA) of an operational PEM fuel cell. The three different mechanisms of water transfer, i.e., electro-osmotic drag, diffusion and hydraulic permeation were isolated by specially imposed boundary conditions. Therefore water transfer through the MEA due to each mechanism could be measured separately. In this study, all the data were collected in an actual assembled operational fuel cell, and some of the data were collected while the fuel cell was generating power. The measured results showed that water transfer due to hydraulic permeation, i.e. the pressure difference between the anode and cathode is at least an order of magnitude lower than those due to other two mechanisms. The data for water transfers due to electro-osmosis and diffusion through the MEA are in good agreement with some of the data and model predications in the literature for the membrane. The methodology used in this study is simple and can be easily adopted for in-situ water transfer measurement due to different mechanisms in actual PEM fuel cells without any cell modifications.

Author(s):  
Michael Pestrak ◽  
Yongqiang Li ◽  
Scott W. Case ◽  
David A. Dillard ◽  
Michael W. Ellis ◽  
...  

Long-term durability of the membrane electrode assembly (MEA) in proton exchange membrane (PEM) fuel cells is one of the major technological barriers to the commercialization of fuel cell vehicles. The cracks in the electrode layers of the MEA, referred to as mud-cracks, are potential contributors to the failure in the PEM. To investigate how these mud-cracks affect the mechanical durability of the MEA, pressure-loaded blister tests are performed at 90°C to determine the biaxial fatigue strength of Gore-Primea® series 57 MEA. In these volume-controlled tests, leaking rate is determined as a function of fatigue cycles. The failure is defined to occur when the leaking rate exceeds a specified threshold. Postmortem characterization using bubble point testing and field emission scanning electron microscopy (FESEM) was conducted to provide visual documentation of leaking failure sites. The analysis of the experimental leaking data indicates that the MEA has much shorter lifetimes at the same nominal stress levels than membrane samples without the electrode layers. FESEM photomicrographs of leaking locations identified via the bubble point testing show cracks in the membrane that are concentrated within the mud-cracks of the electrode layer. These two pieces of information indicate that the mud-cracks within the electrode layers contribute to the leaking failures of the MEA assembly. For the fuel cell industry, this study suggests there is an opportunity to reduce the likelihood of membrane pinhole failures by reducing the size and occurrence of the mud-cracks formed during the MEA processing or by increasing the fatigue resistance (including the notch sensitivity) of the membrane material within the MEA.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
I. Khazaee

For an 11 W proton exchange membrane (PEM) fuel cell, the exergy analysis at different channel geometry and internal parameters such as temperature, pressure, and mass flow rate are investigated experimentally. The geometry of the cell is rectangular, elliptical, and triangular. A PEM fuel cell with 25cm2 active area and Nafion 117 membrane with 4 mg Pt cm-2 for the anode and cathode is employed as a membrane electrode assembly. The results show that when the geometry of the cell is rectangular, the irreversibility of the cell is at lower value and the exergy efficiency is at higher value. Also, the results show that with the increase of hydrogen, oxygen, and cell temperature, the exergy efficiencies of the cell increase and irreversibilities decrease.


2020 ◽  
Author(s):  
Sarmin Hamidi ◽  
Sepand Haghighi ◽  
Kasra Askari

Reported data in this paper are about Nafion 112 membrane standard tests and MEA activation tests of PEM fuel cell in various operation condition. Dataset include two general electrochemical analysis method, Polarization and Impedance curves. In this dataset, effect of different pressure of H2/O2 gas, different voltages and various humidity conditions in several steps are considered. Details of experimental methods has been explained in this paper. Behavior of PEM fuel cell during distinct operation condition tests, activation procedure and different operation condition before and after activation analysis can be concluded from data. In Polarization curves, voltage and power density change as a function of flows of H2/O2 and relative humidity. Resistance of the used equivalent circuit of fuel cell can be calculated from Impedance data. Thus, experimental response of the cell is obvious in the presented data, which is useful in depth analysis, simulation and material performance investigation in PEM fuel cell researches.<br>


2020 ◽  
Author(s):  
Sarmin Hamidi ◽  
Sepand Haghighi ◽  
Kasra Askari

Reported data in this paper are about Nafion 112 membrane standard tests and MEA activation tests of PEM fuel cell in various operation condition. Dataset include two general electrochemical analysis method, Polarization and Impedance curves. In this dataset, effect of different pressure of H2/O2 gas, different voltages and various humidity conditions in several steps are considered. Details of experimental methods has been explained in this paper. Behavior of PEM fuel cell during distinct operation condition tests, activation procedure and different operation condition before and after activation analysis can be concluded from data. In Polarization curves, voltage and power density change as a function of flows of H2/O2 and relative humidity. Resistance of the used equivalent circuit of fuel cell can be calculated from Impedance data. Thus, experimental response of the cell is obvious in the presented data, which is useful in depth analysis, simulation and material performance investigation in PEM fuel cell researches.<br>


2000 ◽  
Vol 122 (02) ◽  
pp. 58-61
Author(s):  
Paul Sharke

A recent study by Joan Ogden at Princeton University’s Center for Energy and Environmental Studies tabulated a range of published estimates for the manufacturing costs of mass-produced auto fuel cell systems. The banded-structure membrane fuel cell, from Fraunhofer ISE, draws off voltage at the endplates through an integrated series connection that ties together individual cells. The typical proton exchange membrane (PEM), fuel cell consists of a series of stacked individual cells, with each cell composed of a flow field plate and a membrane electrode assembly. An air breather PEM fuel cell from DCH Technology distributes hydrogen to the flow fields through a central sleeve, while air at atmospheric pressure comes in through the sides. One of the benefits of Manhattan Scientifics’ circuit board approach is the ability of an electrode to act as a ‘preferential molecular filter’. Fraunhofer Institute scientists have been at work on a banded-structure membrane fuel cell. This device holds five-unit cells on a single plate connected as a series circuit.


2018 ◽  
Vol 778 ◽  
pp. 275-282
Author(s):  
Noaman Khan ◽  
Saim Saher ◽  
Xuan Shi ◽  
Muhammad Noman ◽  
Mujahid Wasim Durani ◽  
...  

Highly porous ZIF-67 (Zeolitic imidazole framework) has a conductive crystalline metal organic framework (MOF) structure which was served as a precursor and template for the preparation of nitrogen-doped carbon nanotubes (NCNTs) electrocatalysts. As a first step, the chloroplatinic acid, a platinum (Pt) precursor was infiltrated in ZIF-67 with a precise amount to obtain 0.12 mg.cm-2 Pt loading. Later, the infiltrated structure was calcined at 700°C in Ar:H2 (90:10 vol%) gas mixture. Multi-walled nitrogen-doped carbon nanotubes were grown on the surface of ZIF-67 crystals following thermal activation at 700°C. The resulting PtCo-NCNTs electrocatalysts were deposited on Nafion-212 solid electrolyte membrane by spray technique to study the oxygen reduction reaction (ORR) in the presence of H2/O2 gases in a temperature range of 50-70°C. The present study elucidates the performance of nitrogen-doped carbon nanotubes ORR electrocatalysts derived from ZIF-67 and the effects of membrane electrode assembly (MEA) steaming on the performance of proton exchange membrane fuel cell (PEMFC) employing PtCo-NCNTs as ORR electrocatalysts. We observed that the peak power density at 70°C was 450 mW/cm2 for steamed membrane electrode assembly (MEA) compared to 392 mW/cm2 for an identical MEA without steaming.


2011 ◽  
Vol 110-116 ◽  
pp. 2301-2307
Author(s):  
P. Buaphad ◽  
P. Thamboon ◽  
C. Tengsirivattana ◽  
J. Saisut ◽  
K. Kusoljariyakul ◽  
...  

This work reports an application of reflective terahertz (THz) imaging for identification of water distribution in the proton exchange membrane (PEM) fuel cell. The THz radiation generated from relativistic femtosecond electron bunches is employed as a high intensity source. The PEM fuel cell is designed specifically for the measurement allowing THz radiation to access the flow field region. The THz image is constructed from reflected radiation revealing absorptive area of water presence. The technique is proved to be a promising tool for studying water management in the PEM fuel cell. Detailed experimental setup and results will be described.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Sign in / Sign up

Export Citation Format

Share Document