Homoclinic Orbit Bifurcation of a Rotating Truncated Conical Shell

Author(s):  
Liming Dai ◽  
Changping Chen

This is a study on Homoclinic bifurcation and subharmonic bifurcation of a truncated conical shallow shell rotating around a single axle and excited by a transverse periodic load. A systematic numerical approach is used to study the nonlinear motion of the system. The conditions under which bifurcations occur are determined on the basis of the characteristics of the rotating shell. Hamilton’s singular distributions are also investigated in details.

2017 ◽  
Vol 25 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Y. X. Hao ◽  
S. W. Yang ◽  
W. Zhang ◽  
M. H. Yao ◽  
A. W. Wang

2021 ◽  
Vol 264 ◽  
pp. 01011
Author(s):  
Matlab Ishmamatov ◽  
Nurillo Kulmuratov ◽  
Nasriddin Ахmedov ◽  
Shaxob Хаlilov ◽  
Sherzod Ablakulov

In this paper, the integro-differential equations of natural oscillations of a viscoelastic ribbed truncated conical shell are obtained based on the Lagrange variational equation. The general research methodology is based on the variational principles of mechanics and variational methods. Geometrically nonlinear mathematical models of the deformation of ribbed conical shells are obtained, considering such factors as the discrete introduction of edges. Based on the finite element method, a method for solving and an algorithm for the equations of natural oscillations of a viscoelastic ribbed truncated conical shell with articulated and freely supported edges is developed. The problem is reduced to solving homogeneous algebraic equations with complex coefficients of large order. For a solution to exist, the main determinant of a system of algebraic equations must be zero. From this condition, we obtain a frequency equation with complex output parameters. The study of natural vibrations of viscoelastic panels of truncated conical shells is carried out, and some characteristic features are revealed. The complex roots of the frequency equation are determined by the Muller method. At each iteration of the Muller method, the Gauss method is used with the main element selection. As the number of edges increases, the real and imaginary parts of the eigenfrequencies increase, respectively.


Author(s):  
Changping Chen ◽  
Liming Dai

Truncated conical shell is an important structure that has been widely applied in many engineering fields. The present paper studies the internal dynamic properties of a truncated rotary conical shell with considerations of intercoupling the high and low order modals by utilizing Harmonic Balance Method. To disclosure the detailed intercoupling characteristics of high order modal and low order modal of the system, a truncated shallow shell is studied and the internal response properties of the system is investigated by using the Multiple Scale Method. Abundant dynamic characteristics are found in the research of this paper. It is found in the research of the paper that the high-order modals of rotating conical shells have significant effects to the amplitude and frequency of the shells.


2007 ◽  
Vol 17 (03) ◽  
pp. 823-836 ◽  
Author(s):  
TIANSI ZHANG ◽  
DEMING ZHU

Bifurcations of homoclinic orbit connecting the strong stable and strong unstable directions are investigated for four-dimensional system. The existence, numbers, co-existence and incoexistence of 1-homoclinic orbit, 2n-homoclinic orbit, 1-periodic orbit and 2n-periodic orbit are obtained, and the bifurcation surfaces (including codimension-1 homoclinic bifurcation surfaces, double periodic orbit bifurcation surfaces, homoclinic-doubling bifurcation surfaces, period-doubling bifurcation surfaces and codimension-2 triple periodic orbit bifurcation surface, and homoclinic and double periodic orbit bifurcation surface) and the existence regions are also located.


1996 ◽  
Vol 06 (05) ◽  
pp. 867-887 ◽  
Author(s):  
A.R. CHAMPNEYS ◽  
YU. A. KUZNETSOV ◽  
B. SANDSTEDE

This paper presents extensions and improvements of recently developed algorithms for the numerical analysis of orbits homoclinic to equilibria in ODEs and describes the implementation of these algorithms within the standard continuation package AUTO86. This leads to a kind of toolbox, called HOMCONT, for analysing homoclinic bifurcations either as an aid to producing new theoretical results, or to understand dynamics arising from applications. This toolbox allows the continuation of codimension-one homoclinic orbits to hyperbolic or non-hyperbolic equilibria as well as detection and continuation of higher-order homoclinic singularities in more parameters. All known codimension-two cases that involve a unique homoclinic orbit are supported. Two specific example systems from ecology and chemical kinetics are analysed in some detail, allowing the reader to understand how to use the the toolbox for themselves. In the process, new results are also derived on these two particular models.


Sign in / Sign up

Export Citation Format

Share Document