Numerical Investigation on Air Side Performance of Fin-and-Tube Heat Exchangers With Large Diameter Tubes and Large Number of Tube Rows

Author(s):  
Feng Zhou ◽  
David Geb ◽  
Ivan Catton

In the present study, air-side turbulent heat transfer and friction characteristics of fin-and-tube heat exchangers with a large number of tube rows and large diameter of tubes are investigated numerically. Finite Volume Method based CFD software, Ansys CFX, was used as the 3-D Reynolds-averaged Navier-Stokes Solver. A k-ω based Shear-Stress-Transport (SST) model was used to predict the turbulent flow and heat transfer through the fin-and-tube heat exchanger coil. The effects of parameters such as Reynolds number, the number of tube rows, tube diameter, tube pitches and fin pitch are examined. In the end, correlations for the Nusselt number and friction factor which applicable to fin-and-tube heat exchangers with large number of large-diameter tube rows are proposed.

Author(s):  
Naoki Osawa ◽  
Yoshinobu Yamamoto ◽  
Tomoaki Kunugi

In this study, validations of Reynolds Averaged Navier-Stokes Simulation (RANS) based on Kenjeres & Hanjalic MHD turbulence model (Int. J. Heat & Fluid Flow, 21, 2000) coupled with the low-Reynolds number k-epsilon model have been conducted with the usage of Direct Numerical Simulation (DNS) database. DNS database of turbulent channel flow imposed wall-normal magnetic field on, are established in condition of bulk Reynolds number 40000, Hartmann number 24, and Prandtl number 5. As the results, the Nagano & Shimada model (Trans. JSME series B. 59, 1993) coupled with Kenjeres & Hanjalic MHD turbulence model has the better availability compared with Myong & Kasagi model (Int. Fluid Eng, 109, 1990) in estimation of the heat transfer degradation in MHD turbulent heat transfer.


2006 ◽  
Vol 128 (11) ◽  
pp. 1122-1129 ◽  
Author(s):  
Edimilson J. Braga ◽  
Marcelo J. S. de Lemos

Turbulent natural convection in a vertical two-dimensional square cavity, isothermally heated from below and cooled at the upper surface, is numerically analyzed using the finite volume method. The enclosure has a thin horizontal porous obstruction, made of a highly porous material and extremely permeable, located at the cavity midheight. Governing equations are written in terms of primitive variables and are recast into a general form. For empty cavities, no discrepancies result for the Nusselt number when laminar and turbulent model solutions are compared for Rayleigh numbers up to 107. Also, in general the porous obstruction decreases the heat transfer across the heated walls showing overall lower Nusselt numbers when compared with those without the porous obstruction. However, the presence of a porous plate in the cavity seems to force an earlier separation from laminar to turbulence model solutions due to higher generation rates of turbulent kinetic energy into the porous matrix.


Sign in / Sign up

Export Citation Format

Share Document