sst model
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 49)

H-INDEX

11
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8593
Author(s):  
Muneerah Al Nuwairan ◽  
Basma Souayeh

This numerical investigation presents the effects of the position of baffles in the shape of a circle’s segment placed inside a circular channel to improve the thermal and flow performance of a solar air heater. Three different baffles’ positions with Reynolds number varying between 10,000 to 50,000 were investigated computationally. The k-omega SST model was used for solving the governing equations. Air was taken as the working fluid. Three pitch ratios (Y = 3, 4, and 5) were considered, while the height of the baffles remained fixed. The result showed an enhancement in Nusselt number, friction factor, j-factor, and thermal performance factor. Staggered exit-length baffles showed maximum enhancement in heat transfer and pressure drop, while inline inlet-length baffles showed the least enhancement. For a pitch ratio of Y = 3.0, the enhancement in all parameters was the highest, while for Y = 5.0, the enhancement in all parameters was the least. The highest thermal performance factor of 1.6 was found for SEL at Y = 3.0.


Author(s):  
J Yao

The flow around a full-scale (FS) ship can be simulated by means of Reynolds-Averaged Naiver-Stokes (RANS) method, which provides a way to obtain more knowledge about scale effects on ship hydrodynamics. In this work, the viscous flow around a static drift tanker in full scale is simulated by using the RANS solver based on the open source platform OpenFOAM. The k - w SST model is employed to approximate the eddy viscosity. To reduce computational time, wall function approach is applied for the FS simulation. The flow around the ship in model scale is simulated as well, but without using any wall function, i.e., using Low-Reynolds number mode. In order to verify the computations, de- tailed studies on the computational grid including investigation of the sensitivity of computed forces to y+ (dimension- less distance of first grid point to wall) and grid dependency study are carried out. The computed forces are compared with available measured data. The scale effects are analysed and discussed by comparisons.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8224
Author(s):  
Jan Michna ◽  
Krzysztof Rogowski ◽  
Galih Bangga ◽  
Martin O. L. Hansen

Accurate computation of the performance of a horizontal-axis wind turbine (HAWT) using Blade Element Momentum (BEM) based codes requires good quality aerodynamic characteristics of airfoils. This paper shows a numerical investigation of transitional flow over the DU 91-W2-250 airfoil with chord-based Reynolds number ranging from 3 × 106 to 6 × 106. The primary goal of the present paper is to validate the unsteady Reynolds averaged Navier-Stokes (URANS) approach together with the four-equation transition SST turbulence model with experimental data from a wind tunnel. The main computational fluid dynamics (CFD) code used in this work was ANSYS Fluent. For comparison, two more CFD codes with the Transition SST model were used: FLOWer and STAR-CCM +. The obtained airfoil characteristics were also compared with the results of fully turbulent models published in other works. The XFOIL approach was also used in this work for comparison. The aerodynamic force coefficients obtained with the Transition SST model implemented in different CFD codes do not differ significantly from each other despite the different mesh distributions used. The drag coefficients obtained with fully turbulent models are too high. With the lowest Reynolds numbers analyzed in this work, the error in estimating the location of the transition was significant. This error decreases as the Reynolds number increases. The applicability of the uncalibrated transition SST approach for a two-dimensional thick airfoil is up to the critical angle of attack.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012002
Author(s):  
A. Sentyabov ◽  
A. Gavrilov ◽  
A. Dekterev

Abstract The paper presents an investigation of the slip length effect on the flow around a circular cylinder at Reynolds number Re = 2.5·105. The study was performed by means of numerical simulation of the flow with the URANS approach based on the k-ω SST model. Calculations show a significant effect of the slip length on the flow patterns. With an increase in the slip length, the drag coefficient noticeably decreases and the pulsations of the lift force reduce. With an increase in the slip length, the separation of the flow from the cylinder is delayed, which significantly affects the flow patterns in the wake behind the cylinder.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012063
Author(s):  
A A Lukyanov ◽  
M V Alekseev

Abstract Numerical modeling of the outflow of an air jet into water with a guillotine rupture of a pipeline by the VOF method using k-ε and k-ω SST turbulence models was carried out. The calculations were carried out in the axisymmetric approximation. The following phases of the outflow process were calculated: the formation of a large gas bubble at the place of the rupture, its growth, the separation of the bubble from the place of rupture, and the formation of a gas jet behind the bubble. It is shown that the rate of bubble detachment in the calculations by the k-ω SST model is higher than that in the calculation by the k-ε model.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012030
Author(s):  
Z Czyż ◽  
A Kazimierska ◽  
P Karpiński ◽  
K Skiba

Abstract It is necessary to evaluate the performance of the main rotor in design stages of a rotorcraft to obtain the assumed lift force and low aerodynamic drag. This paper presents the CFD numerical analysis of the autorotating rotor under transient conditions. Auto-rotation is particularly important in the case of gyrocopters, while in the case of helicopters it is related to flight safety. The calculations allowed us to obtain aerodynamic forces and torque as a function of rotor azimuth for individual rotor blades. The analysis was performed for a rotor tilted by 15 degrees toward the airflow direction. A geometric model was created for the calculations and then a computational model was created in Ansys Fluent software. The k-ω SST model was adopted as the turbulence model which considers the turbulence kinetic energy and its unit dissipation. The obtained results are presented in a rotor and flow coordinate system.


2021 ◽  
Vol 43 ◽  
pp. 45-57
Author(s):  
Mohammed Nebbache ◽  
Abdelkader Youcefi

Using the appropriate procedure, Computational Fluid Dynamics allows predicting many things in several fields, and especially in the field of renewable energies, which has become a promising research axis. The present study aims at highlighting the influence of the curvature correction on turbulence models for the prediction of the aerodynamic coefficients of the S809 airfoil using the Computational Fluid Dynamics code ANSYS Fluent 17.2. Three turbulence models are used: Spalart-Allmaras, Shear Stress Transport k-ω and Transition SST. Experimental results of the 1.8 m × 1.25 m low-turbulence wind tunnel at the Delft University of Technology are used in this work for comparison with the numerical results for a Reynolds number of 106. The results show that the use of the curvature correction improves the prediction of the aerodynamic coefficients for all the turbulence models used. A comparison of the three models is also made using curvature correction since it gave better results. The Transition SST model is the one that gives the best results for the lift coefficient, followed by the Shear Stress Transport kω model, and finally the Spalart-Allmaras model. For the drag coefficient, Transition SST model is the best, followed by the Spalart-Allmaras model, and finally the Shear Stress Transport kω model.


Author(s):  
Maarten Klapwijk ◽  
Thomas Lloyd ◽  
Guilherme Vaz

Abstract A new partially averaged Navier-Stokes (PANS) closure is derived based on the KSKL model. The aim of this new model is to incorporate the desirable features of the KSKL model, compared to the SST model, into the PANS framework. These features include reduced eddy-viscosity levels, a lower dependency on the cell height at the wall, well-defined boundary conditions, and improved iterative convergence. As well as the new model derivation, the paper demonstrates that these desirable features are indeed maintained, for a range of modeled-to-total turbulence kinetic energy ratios (f_k), and even for multiphase flow.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5504
Author(s):  
Mantas Povilaitis ◽  
Justina Jaseliūnaitė

During a severe accident in a nuclear power plant, hydrogen can be generated, leading to risks of possible deflagration and containment integrity failure. To manage severe accidents, great experimental, analytical, and benchmarking efforts are being made to understand combustible gas distribution, deflagration, and detonation processes. In one of the benchmarks—SARNET H2—flame acceleration due to obstacle-induced turbulence was investigated in the ENACCEF facility. The turbulent combustion problem is overly complex because it involves coupling between fluid dynamics, mass/heat transfer, and chemistry. There are still unknowns in understanding the mechanisms of turbulent flame propagation, therefore many methods in interpreting combustion and turbulent speed are present. Based on SARNET H2 benchmark results, a two-dimensional computational fluid dynamics simulation of turbulent hydrogen flame propagation in the ENACCEF facility was performed. Four combustible mixtures with different diluents concentrations were considered—13% H2 and 0%/10%/20%/30% of diluents in air. The aim of this numerical simulation was to validate the custom-built turbulent combustion OpenFOAM solver based on the progress variable model—flameFoam. Furthermore, another objective was to perform parametric analysis in relation to turbulent speed correlations and turbulence models and interpret the k-ω SST model blending function F1 behavior during the combustion process. The obtained results show that in the simulated case all three turbulent speed correlations behave similarly and can be used to reproduce observable flame speed; also, the k-ε model provides more accurate results than the k-ω SST turbulence model. It is shown in the paper that the k-ω SST model misinterprets the sudden parameter gradients resulting from turbulent combustion.


Sign in / Sign up

Export Citation Format

Share Document