A Novel Wake Interaction Model for Wind Farm Layout Optimization

2014 ◽  
Author(s):  
Jim Y. J. Kuo ◽  
David A. Romero ◽  
Cristina H. Amon

Optimizing the turbine layout in a wind farm is crucial to minimize wake interactions between turbines, which can lead to a significant reduction in power generation. This work is motivated by the need to develop wake interaction models that can accurately capture the wake losses in an array of wind turbines, while remaining computationally tractable for layout optimization studies. Among existing wake interaction models, the sum of squares (SS) model has been reported to be the most accurate. However, the SS model is unsuitable for wind farm layout optimization using mathematical programming methods, as it leads to non-linear objective functions. Hence, previous work has relied on approximated power calculations for optimization studies. In this work, we propose a mechanistic linear model for wake interactions based on energy balance, with coefficients determined based on publicly available data from the Horns Rev wind farm. A series of numerical tests was conducted using test cases from the wind farm layout optimization literature. Results show that the proposed model is solvable using standard mathematical programming methods, and resulted in turbine layouts with higher efficiency than those found by previous work.

Author(s):  
Puyi Yang ◽  
Hamidreza Najafi

Abstract The accuracy of analytical wake models applied in wind farm layout optimization (WFLO) problems plays a vital role in the present era that the high-fidelity methods such as LES and RANS are still not able to handle an optimization problem for large wind farms. Based on a verity of analytical wake models developed in the past decades, FLOw Redirection and Induction in Steady State (FLORIS) has been published as a tool integrated several widely used wake models and the expansions for them. This paper compares four wake models selected from FLORIS by applying three classical WFLO scenarios. The results illustrate that the Jensen wake model is the fastest one but the defect of underestimation of velocity deficit is obvious. The Multi Zone model needs to be applied additional tunning on the parameters inside the model to fit specific wind turbines. The Gaussian-Curl wake model as an advanced expansion of the Gaussian wake model does not perform an observable improvement in the current study that the yaw control is not included. The default Gaussian wake model is recommended to be used in the WFLO projects which implemented under the FLROIS framework and has similar wind conditions with the present work.


Author(s):  
Ning Quan ◽  
Harrison Kim

The power maximizing grid-based wind farm layout optimization problem seeks to determine the layout of a given number of turbines from a grid of possible locations such that wind farm power output is maximized. The problem in general is a nonlinear discrete optimization problem which cannot be solved to optimality, so heuristics must be used. This article proposes a new two stage heuristic that first finds a layout that minimizes the maximum pairwise power loss between any pair of turbines. The initial layout is then changed one turbine at a time to decrease sum of pairwise power losses. The proposed heuristic is compared to the greedy algorithm using real world data collected from a site in Iowa. The results suggest that the proposed heuristic produces layouts with slightly higher power output, but are less robust to changes in the dominant wind direction.


Sign in / Sign up

Export Citation Format

Share Document