scholarly journals Electronic Equipment Provides Pipeline Monitoring and Protection: Applications and Limitations

Author(s):  
Randy Penney ◽  
Hugh Flesher

Background: Line break controls developed to date have provided the Pipeline Industry with the best protection available with proven and available technologies. There have been shortcomings in line break control due to various factors including; lack of accurate pressure history at the valve sites creating uncertainty for proper set points and limitations in the flexibility of mechanical systems. Safety: Providing pipeline safety through a line break detection system is critically important for the protection of people, property, and the environment. Safer procedures are available through continuous pipeline monitoring. Application of new technology: Increased availability of “smart” pressure sensors offers a greater degree of accuracy and control. Real time communication for data collection and system configuration (operating data, alarm status and settings, valve status) or remote operation (valve closures or line break override) provides increased control over pipeline operations. Real time information allows continuous monitoring and control. This can be provided through commercially available networks, hence providing economical and reliable methods of communication. Data acquisition through Windows based software allows the user to accumulate, sort, and analyze the data. Overview: Industry requires the ability to monitor pipeline pressures and pipeline rate of pressure change. Industry requires accuracy, reliability, and real time access for controlling valves, while minimizing the occurrences of false valve closures. The pipeline and gas transmission industry is growing, with increasing demands for safe, reliable, and efficient operating systems. New technologies are capable of providing solutions for the Pipeline Industry’s needs. Solutions: A self-contained electronic system, purpose built for the gas pipeline industry is available. The equipment continuously monitors the pipeline, measures pipeline pressures, and calculates pressure changes so that, in the case of a pipeline failure, a command is sent to the actuator to stroke the valve to the fail safe position. The equipment is accessible locally or remotely via SCADA or telemetry to acquire and analyze pipeline conditions on a real time basis, and control the actuator. The equipment is low power consumption suitable for external line power, or is available with solar panels and rechargeable batteries. The equipment continuously gathers information and provides history for pipeline operators. This allows the optimization of set points, with time delays and averaging, to minimize false trips. Windows based software enables ease of use. Owner can set alarm parameters that are protected through password authorization. Summary: Electronic Linebreak Detection Systems are able to provide the flexibility, reliability and responsiveness necessary to meet the growing safety and efficiency demands of the Pipeline Industry. Current technology provides this capability.

Author(s):  
Bhargav Appasani ◽  
Amitkumar Vidyakant Jha ◽  
Sunil Kumar Mishra ◽  
Abu Nasar Ghazali

AbstractReal time monitoring and control of a modern power system has achieved significant development since the incorporation of the phasor measurement unit (PMU). Due to the time-synchronized capabilities, PMU has increased the situational awareness (SA) in a wide area measurement system (WAMS). Operator SA depends on the data pertaining to the real-time health of the grid. This is measured by PMUs and is accessible for data analytics at the data monitoring station referred to as the phasor data concentrator (PDC). Availability of the communication system and communication delay are two of the decisive factors governing the operator SA. This paper presents a pragmatic metric to assess the operator SA and ensure optimal locations for the placement of PMUs, PDC, and the underlying communication infrastructure to increase the efficacy of operator SA. The uses of digital elevation model (DEM) data of the surface topography to determine the optimal locations for the placement of the PMU, and the microwave technology for communicating synchrophasor data is another important contribution carried out in this paper. The practical power grid system of Bihar in India is considered as a case study, and extensive simulation results and analysis are presented for validating the proposed methodology.


2012 ◽  
Vol 253-255 ◽  
pp. 705-715 ◽  
Author(s):  
Mohamed Elbanhawi ◽  
Milan Simic

This paper presents one application of industrial robots in the automation of renewable energy production. The robot supports remote performance monitoring and maintenance of salinity gradient solar ponds. The details of the design, setup and the use of the robot sampling station and the remote Data Acquisition (DAQ) system are given here. The use of a robot arm, to position equipment and sensors, provides accurate and reliable real time data needed for autonomous monitoring and control of this type of green energy production. Robot upgrade of solar ponds can be easily integrated with existing systems. Data logged by the proposed system can be remotely accessed, plotted and analysed. Thus the simultaneous and remote monitoring of a large scale network of ponds can be easily implemented. This provides a fully automated solution to the monitoring and control of green energy production operations, which can be used to provide heat and electricity to buildings. Remote real time monitoring will facilitate the setup and operations of several solar ponds around cities.


Author(s):  
Kufre Esenowo Jack ◽  
Nsikak John Affia ◽  
Uchenna Godswill Onu ◽  
Emmanuel Okekenwa ◽  
Ernest Ozoemela Ezugwu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document