Structural Modification of Amorphous Fused Silica Under Femtosecond Laser Irradiation

Author(s):  
S. Vukelic ◽  
B. Gao ◽  
S. Ryu ◽  
Y. L. Yao

Non-linear absorption of femtosecond laser pulses enables the induction of structural changes in the interior of bulk transparent materials without affecting their surface. This property can be exploited for the transmission welding of transparent dielectrics, three dimensional optical data storages and waveguides. In the present study, femtosecond laser pulses were tightly focused within the interior of bulk fused silica specimen. Localized plasma was formed, initiating rearrangement of the network structure. The change in material properties were studied through employment of spatially resolved Raman spectroscopy, atomic force microscopy and optical microscopy. The nature of the physical mechanisms responsible for the alteration of material properties as a function of process parameters is discussed.

Author(s):  
Siniša Vukelić ◽  
Panjawat Kongsuwan ◽  
Y. Lawrence Yao

Nonlinear absorption of femtosecond-laser pulses enables the induction of structural changes in the interior of bulk transparent materials without affecting their surface. This property can be exploited for transmission welding of transparent dielectrics, three dimensional optical data storages, and waveguides. In the present study, femtosecond-laser pulses were tightly focused within the interior of bulk fused silica specimen. Localized plasma was formed, initiating rearrangement of the network structure. Features were generated through employment of single pulses as well as pulse trains using various processing conditions. The change in material properties were studied through employment of differential interference contrast optical microscopy and atomic force microscopy. The morphology of the altered material as well as the nature of the physical mechanisms (thermal, explosive plasma expansion, or in-between) responsible for the alteration of material properties as a function of process parameters is discussed.


Author(s):  
Siniša Vukelić ◽  
Panjawat Kongsuwan ◽  
Sunmin Ryu ◽  
Y. Lawrence Yao

Nonlinear absorption of femtosecond laser pulses enables the induction of structural changes in the interior of bulk transparent materials without affecting their surface. In the present study, femtosecond laser pulses were tightly focused within the interior of bulk fused silica specimen. Localized plasma was formed, initiating rearrangement of the random network structure. Cross sections of the induced features were examined via decomposition of spatially resolved Raman spectra and a new method for the quantitative characterization of the structure of amorphous fused silica was developed. The proposed method identifies the volume fraction distribution of ring structures within the continuous random network of the probed volume of the target material and changes of the distribution with laser process conditions. Effects of the different process conditions and the material response to different mechanisms of feature generation were discussed as well.


2003 ◽  
Vol 94 (3) ◽  
pp. 1304-1307 ◽  
Author(s):  
Guanghua Cheng ◽  
Yishan Wang ◽  
J. D. White ◽  
Qing Liu ◽  
Wei Zhao ◽  
...  

2001 ◽  
Vol 26 (21) ◽  
pp. 1726 ◽  
Author(s):  
J. W. Chan ◽  
T. Huser ◽  
S. Risbud ◽  
D. M. Krol

2010 ◽  
Vol 18 (10) ◽  
pp. 10209 ◽  
Author(s):  
Mangirdas Malinauskas ◽  
Albertas Žukauskas ◽  
Gabija Bičkauskaitė ◽  
Roaldas Gadonas ◽  
Saulius Juodkazis

2021 ◽  
Author(s):  
Saba Zafar ◽  
Dong-Wei Li ◽  
Acner Camino ◽  
Jun-Wei Chang ◽  
Zuo-Qiang Hao

Abstract High power supercontinuum (SC) is generated by focusing 800 nm and 400 nm femtosecond laser pulses in fused silica with a microlens array. It is found that the spectrum of the SC is getting broader compared with the case of single laser pulse, and the spectral energy density between the two fundamental laser wavelengths is getting significantly higher by optimizing the phase matching angle of the BBO. It exceeds μJ/nm over 490 nm range which is from 380 nm to 870 nm, overcoming the disadvantage of relative lower power in the ranges far from fundamental wavelength.


2008 ◽  
Vol 92 (4) ◽  
pp. 803-808 ◽  
Author(s):  
D. Puerto ◽  
W. Gawelda ◽  
J. Siegel ◽  
J. Bonse ◽  
G. Bachelier ◽  
...  

2004 ◽  
Vol 53 (2) ◽  
pp. 436
Author(s):  
Cheng Guang-Hua ◽  
Wang Yi-Shan ◽  
Liu Qin ◽  
Zhao Wei ◽  
Chen Guo-Fu

2012 ◽  
Author(s):  
Sören Richter ◽  
Fei Jia ◽  
Matthias Heinrich ◽  
Sven Döring ◽  
Stefan Nolte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document