Revision of DNV GL Design Standard for Floating Wind Turbine Structures

Author(s):  
Anne Lene Haukanes Hopstad ◽  
Knut O. Ronold ◽  
Kimon Argyriadis

The first edition of the DNV Offshore Standard “Design of Floating Wind Turbine Structures”, DNV-OS-J103, was published in June 2013. The standard represented a condensation of all relevant requirements for floaters in existing DNV standards for the offshore oil and gas industry which were considered relevant also for offshore floating structures for support of wind turbines, supplemented by necessary adaptation to the wind turbine application. As part of the harmonization of the DNV GL codes for the wind turbine industry after the merger between Det Norske Veritas (DNV) and Germanischer Lloyd (GL) in the autumn of 2013, DNV GL currently plans to publish a revision of DNV-OS-J103 in 2017, to become identified as DNVGL-ST-0119. The new revision is intended to reflect the experience gained since 2013 as well as the current trends within the industry.

Author(s):  
Jakob Wedel-Heinen ◽  
Knut O. Ronold ◽  
Peter Hauge Madsen

The first DNV-OS-J101 standard “Design of Offshore Wind Turbine Structures” [1] was issued in June 2004. The standard represented a condensation of all relevant requirements in DNV standards for the offshore oil and gas industry which were considered relevant also for offshore wind turbine structures, supplemented by necessary adaptation to the wind turbine application. Det Norske Veritas (DNV) plans to issue the next revision of DNV-OS-J101 [2] in 2007. The DNV revised standard now implements the requirements of the coming IEC 61400-3 standard [11], which was presented as a committee draft in 2006. Numerous practical guidelines have been included to help designers of offshore wind turbine structures to develop cost optimal designs. The present paper summarises the proposed revisions of DNV-OS-J101 [2]. The most important revisions cover new formulations for design load cases, modified partial safety factors, exclusion of transformer platforms, more information on wave loads in shallow water and a revised chapter for design of concrete structures.


2014 ◽  
Vol 20 (3) ◽  
pp. 360-371 ◽  
Author(s):  
Amin Barari ◽  
Lars Bo Ibsen

Offshore wind turbine structures are traditionally founded on gravity concrete foundations or mono-piles. Bucket foundations were developed for the offshore oil and gas industry and are now being used in wind turbine construction. The loading in this application is characterized by a vertical load due to the slender construction combined with horizontal forces inducing a large overturning moment. Field tests on bucket foundations were performed to gain insight into the vertical load response of bucket foundations in clay soils. The field tests were accompanied by finite element numerical simulations in order to provide a better understanding of the parameters influencing bucket foundation behaviour.


2021 ◽  
Author(s):  
Ning Lou ◽  
Ezra Wari ◽  
James Curry ◽  
Kevin McSweeney ◽  
Rick Curtis ◽  
...  

This research identifies key factors, or safety culture categories, that can be used to help describe the safety culture for the offshore oil and gas industry and develop a comprehensive offshore safety culture assessment toolkit for use by the US Gulf of Mexico (GoM) owners and operators. Detailed questionnaires from selected safety culture frameworks of different industries were collected and analyzed to identify important safety culture factors and key questions for assessment. Safety frameworks from different associations were investigated, including the Center for Offshore Safety (COS), Bureau of Safety and Environmental Enforcement (BSEE), and the National Transportation Safety Board (NTSB). The safety culture factors of each of these frameworks were generalized and analyzed. The frequency of the safety culture factors in each framework was analyzed to explore commonality. The literature review and analysis identified a list of common factors among safety culture frameworks.


Author(s):  
Tom Ivar Pedersen ◽  
Håkon Grøtt Størdal ◽  
Håvard Holm Bjørnebekk ◽  
Jørn Vatn

Sign in / Sign up

Export Citation Format

Share Document