Autonomous Inflow Control Device Pilot Application for Extra Heavy Oil Field

Author(s):  
Mahmoud Abdel Rafea ◽  
Cristhian Criado

Autonomous Inflow Control Device (AICD) completion was successfully designed and applied in a horizontal well drilled in a deep reservoir in an extra heavy oil field located in South America where the average total depth of the targeted reservoir is around ten thousands feet and the in-situ viscosity is 600 cps while API Gravity is ranged between 8.5–9.5. Due to geological and petro-physical features in this area which turns into permeability variations and thick transition zone across the reservoir, a horizontal well of 2500 feet length was drilled and completed with a standalone screen along with Autonomous Inflow Control Device (AICD) to avoid sand production and delay water production. The initial design for the AICD considered the variation of permeability, rock quality, pressure differential across the horizontal length including the operational factors. Accordingly, multiple scenarios using reservoir simulation built-in model (Petrel-RE) and Netool for ICD selection, design and placement where the geological properties of the model were updated based on the run NMR and Caliper logs while geo-steering the well. Also, a fine grid sector model was generated to assess optimum well completion design. The AICD completion was successfully deployed and resulted in extending the well life by delaying water production and it is expected to get its ultimate benefit whenever starting the implementation of a water flood project near that producer well.

2020 ◽  
Author(s):  
Mustafa Al-Hussaini ◽  
Hamad Al-Kandari ◽  
Ravi Kurma ◽  
Kishore Jyoti Burman ◽  
Wuroud M. Al-Fadhli ◽  
...  

Abstract This paper describes a dynamic modelling and optimization study to investigate the viability of deploying intelligent completions for well management in a mature oilfield in order to mitigate the challenges of increasing water cut and rapid diminishing of surface locations for new wells across the Greater Burgan field. Reservoir simulation is used to assess the potential benefits of installing Flow Control Valves (FCVs) in a candidate well, to control production from multiple reservoir zones. A representative sector model is defined around the candidate well, to include surrounding wells that could influence its flow behaviour. Reservoir properties are extracted from a fine-scale geological realization and updated using current well logs. Sensitivity studies are performed to determine the appropriate size and grid design for simulation. The well is planned to be completed across six producing reservoir zones with a single tubing and an Electrical Submersible Pump (ESP). In the optimization strategy, the FCV aperture openings are adjusted over the lifetime of the well, to maximize the Net Present Value, while meeting operational and strategic constraints. The robustness of the forecast outcomes are highly dependent on the quality of reservoir characterization. A sector model large enough to represent the effects of reservoir heterogeneities and interference from other wells, was used. The efficient optimization workflows used here can be generalized for similar analyses of other wells and other fields. The optimized results demonstrate that installation of FCVs can help to meet the simultaneous objectives of boosting oil production while reducing water production. This is achieved by choking back the deeper high-water production zones to accelerate oil production from the upper high oil saturation zones, while also targeting offtake to induce the shallower low-pressure zone to deliver more. The large initial capital outlay, comprising the equipment and service cost of the FCV installation is fully offset within the first year of production, post installation. This study highlights the significant upside benefits for the management of complex brown fields such as the Greater Burgan by adopting smart well completion strategy. Improving well production performance, and supporting multi-zone completions, should also enable reduction of well counts for fields with existing high well density and lack of surface space to accommodate many new dispersed wells.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 494-502 ◽  
Author(s):  
Z.. Wu ◽  
S.. Vasantharajan ◽  
M.. El-Mandouh ◽  
P.V.. V. Suryanarayana

Summary In this paper, we present a new, semianalytical gravity-drainage model to predict the oil production of a cyclic-steam-stimulated horizontal well. The underlying assumption is that the cyclic steam injection creates a cylindrical steam chamber in the upper area of the well. Condensed water and heated oil in the chamber are driven by gravity and pressure drawdown toward the well. The heat loss during the soak period and during oil production is estimated under the assumption of vertical and radial conduction. The average temperature change in the chamber during the cycle is calculated using a semianalytical expression. Nonlinear, second-order ordinary differential equations are derived to describe the pressure distribution caused by the two-phase flow in the wellbore. A simple iteration scheme is proposed to solve these equations. The influx of heated oil and condensed water into the horizontal wellbore is calculated under the assumption of steady-state radial flow. The solution from the semianalytical formulation is compared against the results from a commercial thermal simulator for an example problem. It is shown that the model results are in good agreement with those obtained from reservoir simulation. Sensitivity studies for optimization of wellbore length, gravity drainage, bottomhole pressure, and steam-injection rate are conducted with the model. Results indicate that the proposed model can be used in the optimization of individual-well performance in cyclic-steam-injection heavy-oil development. The semianalytical thermal model presented in this work can offer an attractive alternative to numerical simulation for planning heavy-oil field development.


2013 ◽  
Vol 772 ◽  
pp. 755-760
Author(s):  
Shao Yuan Mo ◽  
Shun Li He ◽  
Shuai Wang ◽  
Hai Yong Zhang ◽  
Li Jing Chang ◽  
...  

Fractured-horizontal well can effectively reduce the percolation resistance near wellbore, improve the fluid mobility and enhance the production. However, in Chang 6 ultra-low permeability reservoir, BaiBao block, HuaQing oilfield, the efficiency of fractured-horizontal well is highly poor due to the production swiftly down and water cut sharply up. For studying the unsatisfying oil development by fractured-horizontal well in HuaQing oil field, the evaluation of reservoir properties and the option of stratum for fractured-horizontal well application have been performed based on the practical geological model of BaiBao block in HuaQing oil field. The numerical simulation is used to study the effect of reservoir permeability, Thickness and Aeolotropism on the production and to optimize the horizontal length, fracture spacing, half length and conductivity. The conclusion shows that Chang 63 stratum is qualified for fractured-horizontal well application. Through the practical geological model, the optimizations of horizontal length range, fracture spacing, half length and conductivity are 800m to 1200m, 77m, 150m, and 15μm2cm, respectively. The results can be conducted for fractured-horizontal well application in HuaQing oil field.


2010 ◽  
Author(s):  
Elmer Richard Peterson ◽  
Martin P. Coronado ◽  
Luis Garcia ◽  
Gonzalo Alberto Garcia

2005 ◽  
Author(s):  
Xugang Wang ◽  
Honglan Zou ◽  
Guocheng Li ◽  
Changmou Nie ◽  
Jianbin Chen

Sign in / Sign up

Export Citation Format

Share Document