fracture spacing
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 48)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Attoumane Abi ◽  
Julien Walter ◽  
Ali Saeidi ◽  
Romain Chesnaux

Usually, fracture sampling studies comprise the collection of several fracture samples, which involve many fracture clusters. Grouping fracture samples into structural domains is generally useful for geologists, hydrogeologists, and geomechanicians as a region of fractured rocks is subdivided into sub-regions with similar behavior in terms of their hydromechanical properties. One of the common methods used for grouping fracture samples into structural domains considers the fracture orientation of clusters and ignores several fracture parameters, such as fracture spacing, aperture, and persistence, which are important for fluid circulation in the rock mass.In this study, we proposed a new cluster-based similarity method that considered the orientation of clusters as well as clusters’ aperture, persistence, and fracture spacing. Field investigations were conducted in the Grenville geological province of the Canadian Shield in the Lanaudière region, Quebec, Canada, where fractures were sampled from 30 outcrops and four boreholes. The proposed method is more suitable than other methods, and has applications in hydrogeology, rock mechanics, and especially in studies of fluid circulation in the rock mass. In addition, a method for the compartmentalization of a given study area into structural domains by means of Voronoi diagrams was also proposed.


Author(s):  
Jiayao Chen ◽  
Yifeng Chen ◽  
Anthony G. Cohn ◽  
Hongwei Huang ◽  
Jianhong Man ◽  
...  

2021 ◽  
Author(s):  
Yan Qiao ◽  
Yang Zhang ◽  
Tianhong Jiang ◽  
Guobin Zhang ◽  
Qing Chen ◽  
...  

Abstract During hydraulic fracturing process of the Permian Basin in North America, the cluster spacing has been shortened to 3m, and stress shadow can no longer be ignored. Many scholars have studied the influence of stress shadows to optimize cluster spacing. For reservoirs with natural fractures, how to activate more natural fractures through hydraulic fracturing has become the purpose. However, few scholars have studied changes in the activation law of natural fractures under stress shadow conditions. This paper establishes stress change value around single fracture according to Sneddon formula, and calculates the maximum and minimum principal stress according to plane principal stress calculation formula. Considering attenuation of net pressure, stress field of multiple fractures is established, and influence of various factors on stress re-orientation is studied. Finally, considering attenuation of net pressure with distance, according to discriminant formulas of tension & shear activation, the proportion of natural fractures that are easily activated is calculated. By designing orthogonal experiments, the influence of different factors on the proportion of activated natural fractures was studied. The stress increase in the direction of the minimum principal stress is much greater than the increase in the direction of the maximum principal stress. The stress increases in the direction of the maximum principal stress at the tip of the hydraulic fracture. The tip position between hydraulic fractures is "neutralized" due to the superposition of shear stress. Stress-fracture angle and the in-situ stress difference are the common main influencing factors for both tensile and shear activation, but the net pressure has little effect on the tensile activation of natural fracture. The fracture spacing has little effect on the activation of natural fractures. When formulating the fracturing scheme, we should pay more attention to the net pressure rather than the fracture spacing. This article provides a fast calculation method for the activation state of natural fractures considering the stress shadow, which provides a reference index for activating more natural fractures and increasing the production of a single well.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Jiawei Li ◽  
Yongzan Liu ◽  
Kan Wu

Summary The 2D displacement discontinuity method (DDM) has been widely used to characterize the hydraulic fracture geometry and the induced in-situ stresses in the oil and gas industry owing to its simplicity and accuracy. As smaller fracture spacing is used by multistage fracturing, the constant DDM (CDDM) loses its accuracy in predicting the fracture behaviors, especially for the inner fractures in a stage where they are subjected to the strong stress shadowing effect. In this paper, the 2D higher order DDM (HDDM) based on the joint elements was developed to overcome this limitation. The higher order displacement discontinuity intensively increases the accuracy of CDDM but maintains the same amount of computation time by using patched-element pattern. The joint elements are introduced to simultaneously determine the opening, shearing, and closing of each fracture element based on the stress boundary condition, which can avoid the “negative width” of the inner fractures given by CDDM which are mechanically closed under the strong stress shadowing effect. The developed 2D joint element HDDM (JE-HDDM) gives the same results with the CDDM when the fracture spacing is relatively large, but shows its outperformance in both efficiency and accuracy over the CDDM in predicting the displacement discontinuities and induced in-situ stresses in close fracture-spacing case.


2021 ◽  
Author(s):  
Daiyan Zhang ◽  
Shiying Ma ◽  
Jing Zhang ◽  
Yue Zhu ◽  
Bin Wang ◽  
...  

Abstract Mahu oilfield is currently the largest tight conglomerate reservoir in the world, where Ma-131 and Ma-18 plays are the first two commercially developed reservoirs. In order to reduce the cost and explore the best fracturing parameters, field experiments have been conducted in these two plays since 2017. The types of proppant and fracturing fluid, the slickwater ratio, and the fracture spacing are mainly changed for comparison, and fracturing effects are evaluated to establish a reference for developing the neighboring plays in Mahu oilfield. This paper summarizes the fracturing parameters and production histories of 74 wells in Ma-131 and Ma-18 plays during four years of field operations. Firstly, results indicate that silica sands perform similar to ceramics in the Ma-131 play where the reservoir depth is smaller than 3300 m; however, in the Ma-18 play where the reservoir is deeper than 3500m, increasing the sand volume by 1.1 times still cannot reach the production in wells using ceramics. Secondly, when the fracture spacing is reduced, both oil production and water flowback become even smaller in wells using sands than those using ceramics; this is due to the increase of closure pressure and decrease of fluid volume per cluster respectively. Thirdly, when the crosslinked guar is replaced by the slickwater, no obvious change in oil production is noticed even though the volume of fracturing fluid is almost doubled; limited lengths of propped fractures due to the poor proppant-carrying ability of slickwater likely offset the production enhancement from the decrease of formation damage by slickwater. This paper summarizes learnings from the field experiments during four years of development in Mahu oilfield, and help guide the optimization of hydraulic fracturing parameters for future wells.


2021 ◽  
Author(s):  
Hafiz Mustafa Ud Din Sheikh ◽  
W. J. Lee ◽  
H. S. Jha

Abstract This paper presents a simple method to model boundary-dominated flow in hydraulically fractured wells, including horizontal wells with multiple fractures. While these wells are almost always producedat more nearly constant BHP rather than constant rate, use of material-balance time transforms variable-rate production profiles to constant-rate profiles, allowing us to use the pseudo-steady-state (PSS) flow equation for modeling. However, the PSS equation requires use of shape factors in applications, and shape factors available in the literature are available only for square-shaped bounded reservoirs with hydraulic fractures. In this work, we derived shape factors for wells centered in rectangular-shaped drainage areas with different length-to-width aspect ratios. The superposition principle can be used to transform transient radial flow and transient linear flow solutions into bounded reservoir solutions. At large times (when boundary-dominated flow is established), results from these solutions are similar to those obtained from the PSS equation. Therefore, for a pre-defined reservoir geometry, pressure drop values from superimposed transient flow equationscan be substituted back into the PSS equation to calculate shape factors for that reservoir geometry.We used shape factors previously presented by other authors for square drainage areas to validate themethod before applying it to calculate shape factors for more general drainage area configurations. We present shape factors for different fracture half-length to fracture-spacing ratios ranging from 0.2 to 10. Calculated shape factors, when plotted against the fracture half-length to fracture-spacing ratio, produced a smooth curve which can be used to interpolate shape factor values for other fracture configurations. We present applications of this methodology to example low-permeability wells. The use of the PSS equation for wells with vertical fracturescan be extended to multi-fractured horizontal wells (MFHWs) by incorporating the number of fractures in the equation; hence, shape factorsderived for wells with vertical fractures can also be used for MFHWs. Although our results are rigorously correct only for fluids with constant compressibility, use of pseudo-pressure and pseudo-time transformations extend application to compressible fluids, notably gases. Using the PSS equation in production data analysis allows us to calculate contributing reservoir volume and drainage area in a simple manner not requiring use of specialized software.


2021 ◽  
Vol 9 (4) ◽  
pp. 1073-1090
Author(s):  
Joseph P. Verdian ◽  
Leonard S. Sklar ◽  
Clifford S. Riebe ◽  
Jeffrey R. Moore

Abstract. The detachment of rock fragments from fractured bedrock on hillslopes creates sediment with an initial size distribution that sets the upper limits on particle size for all subsequent stages in the evolution of sediment in landscapes. We hypothesize that the initial size distribution should depend on the size distribution of latent sediment (i.e., fracture-bound blocks in unweathered bedrock) and weathering of blocks both before and during detachment (e.g., disintegration along crystal grain boundaries). However, the initial size distribution is difficult to measure because the interface across which sediment is produced is often shielded from view by overlying soil. Here we overcome this limitation by comparing fracture spacings measured from exposed bedrock on cliff faces with particle size distributions in adjacent talus deposits at 15 talus–cliff pairs spanning a wide range of climates and lithologies in California. Median fracture spacing and particle size vary by more than 10-fold and correlate strongly with lithology. Fracture spacing and talus size distributions are also closely correlated in central tendency, spread, and shape, with b-axis diameters showing the closest correspondence with fracture spacing at most sites. This suggests that weathering has not modified latent sediment either before or during detachment from the cliff face. In addition, talus at our sites has not undergone much weathering after deposition and is slightly coarser than the latent sizes because it contains unexploited fractures inherited from bedrock. We introduce a new conceptual framework for understanding the relative importance of latent size and weathering in setting initial sediment size distributions in mountain landscapes. In this framework, hillslopes exist on a spectrum defined by the ratio of two characteristic timescales: the residence time in saprolite and weathered bedrock and the time required to detach a particle of a characteristic size. At one end of the spectrum, where weathering residence times are negligible, the latent size distribution can be used to predict the initial size distribution. At the other end of the spectrum, where weathering residence times are long, the latent size distribution can be erased by weathering in the critical zone.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1474
Author(s):  
Yuchao Zeng ◽  
Fangdi Sun ◽  
Haizhen Zhai

The energy efficiency of the enhanced geothermal system (EGS) measures the economic value of the heat production and electricity generation, and it is a key indicator of system production performance. Presently there is no systematic study on the influence of well layout on the system energy efficiency. In this work we numerically analyzed the main factors affecting the energy efficiency of EGS using the TOUGH2-EOS1 codes at Gonghe Basin geothermal field, Qinghai province. The results show that for the reservoirs of the same size, the electric power of the three horizontal well system is higher than that of the five vertical well system, and the electric power of the five vertical well system is higher than that of the three vertical well system. The energy efficiency of the three horizontal well system is higher than that of the five vertical well system and the three vertical well system. The reservoir impedance of the three horizontal well system is lower than that of the three vertical well system, and the reservoir impedance of the three vertical well system is lower than that of the five vertical system. The sensitivity analysis shows that well spacing has an obvious impact on the electricity production performance; decreasing well spacing will reduce the electric power, reduce the energy efficiency and only have very slight influence on the reservoir impedance. Fracture spacing has an obvious impact on the electricity production performance; increasing fracture spacing will reduce the electric power and reduce the energy efficiency. Fracture permeability has an obvious impact on the electricity production performance; increasing fracture permeability will improve the energy efficiency and reduce the reservoir impedance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Jun ◽  
Sha Peng ◽  
Gao Shuyu ◽  
Ni Jiji

Rock quality designation (RQD) is widely adopted as a fundamental tool in characterizing rock masses since it was devised in 1964. Since the conventional RQD calculation is limited due to its dependence on the selected threshold, previous research introduced generalized RQD to adequately reflect the anisotropy and scale effect of RQD. However, the influence of the joint development inside rock mass on generalized RQD remains unclear. The objective of this work is to investigate characteristics of the generalized RQD in view of different development degrees of discontinuities in rock mass, including spacing (density) and trace length. Three-dimensional fracture network modelling is employed to simulate the actual rock mass of open-pit iron mine in China. Virtual scanlines are set to obtain RQD values in different directions. The results primarily show that the generalized RQD should be introduced to calculate the RQD with different thresholds to fully reflect the anisotropy of rock mass. The optimal threshold can be obtained based on an anisotropic coefficient, which is defined by (RQDmax-RQDmin). It is also indicated that the fracture spacing has a great influence on both the anisotropy of RQD and the selection of the optimal threshold. The optimal threshold of the generalized RQD increases with the increase in the fracture spacing. In addition, the scale effect of RQD in different models is discussed by changing the length of the scanlines. The longer the scanlines we set, the more stable RQD value can be obtained in the model. It is recommended to fit much longer scanline to get realistic RQD in heavily fractured rock mass.


Sign in / Sign up

Export Citation Format

Share Document