Three-Dimensional Direct Numerical Simulations of Flows Past an Inclined Cylinder Near a Plane Boundary

2019 ◽  
Author(s):  
Chunning Ji ◽  
Zhimeng Zhang ◽  
Dong Xu ◽  
Narakorn Srinil

Abstract Flows past an inclined cylinder in the vicinity of a plane boundary are numerically investigated using direct numerical simulations. Parametric studies are carried out at the normal Reynolds number of 500, a fixed gap ratio of 0.8 and five inclination angles (α) ranging from 0° to 60° with an increment of 15°. Two distinct vortex-shedding modes are observed: parallel (α ≤ 15°) and oblique (α ≥ 30°) vortex shedding modes. The occurrence of the oblique vortex shedding is accompanied by the base pressure gradient along the cylinder span and the resultant axial flows near the cylinder’s base. The drag and lift coefficients decrease from the parallel mode to the oblique mode, owing to the intensified three-dimensionality of the wake flows and the phase difference in the vortex-shedding along the span. The Independent Principle (IP) is valid in predicting the hydrodynamic forces and the wake patterns when α ≤ 15°, and IP might produce unacceptable errors when α ≥ 30°. Compared to the mean drag force, the fluctuating lift force is more sensitive to the inclination angle. The IP validity range is substantially smaller than that for flows past a wall-free cylinder.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Chunning Ji ◽  
Zhimeng Zhang ◽  
Dong Xu ◽  
Narakorn Srinil

Abstract Understanding hydrodynamics of a free-spanning pipeline subjected to omni-directional flows is important to engineering design. In this study, horizontally oblique flows past a three-dimensional circular cylinder in the vicinity of a plane boundary are numerically investigated using direct numerical simulations. Parametric studies are carried out at the normal Reynolds number of 500, a fixed gap-to-diameter ratio of 0.8 and five flow inclination angles (α) ranging from 0 deg to 60 deg with an increment of 15 deg. Two distinct vortex-shedding modes are observed: parallel (α ≤ 15 deg) and oblique (α ≥ 30 deg) vortex shedding. The wake evolution is further divided into two or three stages depending on α. The occurrence of the oblique vortex shedding is accompanied by the base pressure gradient along the cylinder span and the resultant axial flows near the cylinder base. The total hydrodynamic drag and lift force coefficients decrease from being the parallel mode to the oblique mode, owing to the intensified three-dimensionality of wake flows and the phase differences in the spanwise vortex shedding. The independence principle (IP) is found to be valid in predicting hydrodynamic forces and wake patterns when α ≤ 15 deg. This IP might produce unacceptable errors when α > 15 deg. In comparison with the mean drag force, the fluctuating lift force is more sensitive to the inclination angle. The IP validity range is substantially smaller than that in the case of flow past a wall-free cylinder. Such finding would be practically useful for vortex-induced vibration prediction.


2009 ◽  
Vol 630 ◽  
pp. 1-4 ◽  
Author(s):  
IVAN MARUSIC

Turbulent flows near walls have been the focus of intense study since their first description by Ludwig Prandtl over 100 years ago. They are critical in determining the drag and lift of an aircraft wing for example. Key challenges are to understand the physical mechanisms causing the transition from smooth, laminar flow to turbulent flow and how the turbulence is then maintained. Recent direct numerical simulations have contributed significantly towards this understanding.


2008 ◽  
Vol 602 ◽  
pp. 175-207 ◽  
Author(s):  
L. E. JONES ◽  
R. D. SANDBERG ◽  
N. D. SANDHAM

Direct numerical simulations (DNS) of laminar separation bubbles on a NACA-0012 airfoil at Rec=5×104 and incidence 5° are presented. Initially volume forcing is introduced in order to promote transition to turbulence. After obtaining sufficient data from this forced case, the explicitly added disturbances are removed and the simulation run further. With no forcing the turbulence is observed to self-sustain, with increased turbulence intensity in the reattachment region. A comparison of the forced and unforced cases shows that the forcing improves the aerodynamic performance whilst requiring little energy input. Classical linear stability analysis is performed upon the time-averaged flow field; however no absolute instability is observed that could explain the presence of self-sustaining turbulence. Finally, a series of simplified DNS are presented that illustrate a three-dimensional absolute instability of the two-dimensional vortex shedding that occurs naturally. Three-dimensional perturbations are amplified in the braid region of developing vortices, and subsequently convected upstream by local regions of reverse flow, within which the upstream velocity magnitude greatly exceeds that of the time-average. The perturbations are convected into the braid region of the next developing vortex, where they are amplified further, hence the cycle repeats with increasing amplitude. The fact that this transition process is independent of upstream disturbances has implications for modelling separation bubbles.


Author(s):  
Joshua R. Brinkerhoff ◽  
Metin I. Yaras

This paper describes numerical simulations of the instability mechanisms in a separation bubble subjected to a three-dimensional freestream pressure distribution. Two direct numerical simulations are performed of a separation bubble with laminar separation and turbulent reattachment under low freestream turbulence at flow Reynolds numbers and streamwise pressure distributions that approximate the conditions encountered on the suction side of typical low-pressure gas-turbine blades with blade sweep angles of 0° and 45°. The three-dimensional pressure field in the swept configuration produces a crossflow-velocity component in the laminar boundary layer upstream of the separation point that is unstable to a crossflow instability mode. The simulation results show that crossflow instability does not play a role in the development of the boundary layer upstream of separation. An increase in the amplification rate and most amplified disturbance frequency is observed in the separated-flow region of the swept configuration, and is attributed to boundary-layer conditions at the point of separation that are modified by the spanwise pressure gradient. This results in a slight upstream movement of the location where the shear layer breaks down to small-scale turbulence and modifies the turbulent mixing of the separated shear layer to yield a downstream shift in the time-averaged reattachment location. The results demonstrate that although crossflow instability does not appear to have a noticeable effect on the development of the transitional separation bubble, the 3D pressure field does indirectly alter the separation-bubble development by modifying the flow conditions at separation.


2015 ◽  
Vol 770 ◽  
pp. 189-209 ◽  
Author(s):  
M. Chrust ◽  
C. Dauteuille ◽  
T. Bobinski ◽  
J. Rokicki ◽  
S. Goujon-Durand ◽  
...  

We take up the old problem of Calvert (J. Fluid Mech., vol. 29, 1967, pp. 691–703) concerning the wake of a cylinder inclined with respect to the flow direction, and consider it from the viewpoint of transition to turbulence. For cylinders placed perpendicular to the flow direction, we address the disagreement between numerical simulation of the ideal axisymmetric configuration and experimental observations. We demonstrate that for a disk (a cylinder of aspect ratio infinity) and a flat cylinder of aspect ratio ${\it\chi}=6$ (ratio of diameter to height), the numerically predicted transition scenario is limited to very small inclination angles and is thus difficult to test experimentally. For inclination angles of about $4^{\circ }$ and more, a joint numerical and experimental study shows that the experimentally observed scenario agrees qualitatively well with the results of numerical simulations. For the flat cylinder ${\it\chi}=6$, we obtain satisfactory agreement with regard to dependence of the critical Reynolds number ($\mathit{Re}$) of the onset of vortex shedding on the inclination angle. Both for infinitely flat disks and cylinders of aspect ratio ${\it\chi}=6$, a small inclination tends to promote vortex shedding, that is, to lower the instability threshold, whereas for inclination angles exceeding $20^{\circ }$ the opposite effect is exhibited. The Strouhal number of oscillations is found to be only very weakly dependent on the Reynolds number, and very good agreement is obtained between values reported by Calvert (J. Fluid Mech., vol. 29, 1967, pp. 691–703) at high Reynolds numbers and our simulations at $\mathit{Re}=250$. In contrast, we observe relatively poor agreement in Strouhal numbers when comparing the results of our numerical simulations and the data acquired from the experimental set-up described in this paper. Closer analysis shows that confidence can be placed in the numerical results because the discrepancy can be attributed to the influence of the support system of the flat cylinder. Suggestions for improvement of the experimental set-up are provided.


Sign in / Sign up

Export Citation Format

Share Document