scholarly journals Three-dimensional direct numerical simulations of turbulent fuel-lean H2/air hetero-/homogeneous combustion over Pt with detailed chemistry

2017 ◽  
Vol 36 (3) ◽  
pp. 4355-4363 ◽  
Author(s):  
Behrooz Ostadmohammadi Arani ◽  
Christos Emmanouil Frouzakis ◽  
John Mantzaras ◽  
Konstantinos Boulouchos
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5548
Author(s):  
Felix Benjamin Keil ◽  
Marvin Amzehnhoff ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

In the present study, flame propagation statistics from turbulent statistically planar premixed flames obtained from simple and detailed chemistry, three-dimensional Direct Numerical Simulations, were evaluated and compared to each other. To this end, a new database was established encompassing five different conditions on the turbulent premixed combustion regime diagram, using nearly identical numerical methods and the same initial and boundary conditions. A detailed discussion of the advantages and limitations of both approaches is provided, including the difference in carbon footprint for establishing the database. It is shown that displacement speed statistics and their interrelation with curvature and tangential strain rate are in very good qualitative and reasonably good quantitative agreement between simple and detailed chemistry Direct Numerical Simulations. Hence, it is concluded that simple chemistry simulations should retain their importance for future combustion research, and the environmental impact of high-performance computing methods should be carefully chosen in relation to the goals to be achieved.


2008 ◽  
Vol 602 ◽  
pp. 175-207 ◽  
Author(s):  
L. E. JONES ◽  
R. D. SANDBERG ◽  
N. D. SANDHAM

Direct numerical simulations (DNS) of laminar separation bubbles on a NACA-0012 airfoil at Rec=5×104 and incidence 5° are presented. Initially volume forcing is introduced in order to promote transition to turbulence. After obtaining sufficient data from this forced case, the explicitly added disturbances are removed and the simulation run further. With no forcing the turbulence is observed to self-sustain, with increased turbulence intensity in the reattachment region. A comparison of the forced and unforced cases shows that the forcing improves the aerodynamic performance whilst requiring little energy input. Classical linear stability analysis is performed upon the time-averaged flow field; however no absolute instability is observed that could explain the presence of self-sustaining turbulence. Finally, a series of simplified DNS are presented that illustrate a three-dimensional absolute instability of the two-dimensional vortex shedding that occurs naturally. Three-dimensional perturbations are amplified in the braid region of developing vortices, and subsequently convected upstream by local regions of reverse flow, within which the upstream velocity magnitude greatly exceeds that of the time-average. The perturbations are convected into the braid region of the next developing vortex, where they are amplified further, hence the cycle repeats with increasing amplitude. The fact that this transition process is independent of upstream disturbances has implications for modelling separation bubbles.


Author(s):  
Joshua R. Brinkerhoff ◽  
Metin I. Yaras

This paper describes numerical simulations of the instability mechanisms in a separation bubble subjected to a three-dimensional freestream pressure distribution. Two direct numerical simulations are performed of a separation bubble with laminar separation and turbulent reattachment under low freestream turbulence at flow Reynolds numbers and streamwise pressure distributions that approximate the conditions encountered on the suction side of typical low-pressure gas-turbine blades with blade sweep angles of 0° and 45°. The three-dimensional pressure field in the swept configuration produces a crossflow-velocity component in the laminar boundary layer upstream of the separation point that is unstable to a crossflow instability mode. The simulation results show that crossflow instability does not play a role in the development of the boundary layer upstream of separation. An increase in the amplification rate and most amplified disturbance frequency is observed in the separated-flow region of the swept configuration, and is attributed to boundary-layer conditions at the point of separation that are modified by the spanwise pressure gradient. This results in a slight upstream movement of the location where the shear layer breaks down to small-scale turbulence and modifies the turbulent mixing of the separated shear layer to yield a downstream shift in the time-averaged reattachment location. The results demonstrate that although crossflow instability does not appear to have a noticeable effect on the development of the transitional separation bubble, the 3D pressure field does indirectly alter the separation-bubble development by modifying the flow conditions at separation.


2014 ◽  
Vol 747 ◽  
pp. 141-185 ◽  
Author(s):  
Martin Embacher ◽  
H. F. Fasel

AbstractLaminar separation bubbles generated on a flat plate by an adverse pressure gradient are investigated using direct numerical simulations (DNSs). Two-dimensional periodic forcing is applied at a blowing/suction slot upstream of separation. Control of separation through forcing with various frequencies and amplitudes is examined. For the investigation of absolute instability mechanisms, baseflows provided by two-dimensional Navier–Stokes calculations are analysed by introducing pulse disturbances and computing the three-dimensional flow response using DNS. The primary instability of the time-averaged flow is investigated with a local linear stability analysis. Employing a steady flow solution as baseflow, the nonlinear and non-parallel effects on the self-sustained disturbance development are illustrated, and a feedback mechanism facilitated by the upstream flow deformation is identified. Secondary instability is investigated locally using spatially periodic baseflows. The flow response to pulsed forcing indicates the existence of an absolute secondary instability mechanism, and the results indicate that this mechanism is dependent on the periodic forcing. Results from three-dimensional DNS provide insight into the global instability mechanisms of separation bubbles and complement the local analysis. A forcing strategy was devised that suppresses the temporal growth of three-dimensional disturbances, and as a consequence, breakdown to turbulence does not occur. Even for a separation bubble that has transitioned to turbulence, the flow relaminarizes when applying two-dimensional periodic forcing with proper frequencies and amplitudes.


2017 ◽  
Vol 835 ◽  
Author(s):  
Hang Ding ◽  
Xi Zhu ◽  
Peng Gao ◽  
Xi-Yun Lu

In this paper, we investigate the ratchet mechanism of drops climbing a vibrated oblique plate based on three-dimensional direct numerical simulations, which for the first time reproduce the existing experiment (Brunet et al., Phys. Rev. Lett., vol. 99, 2007, 144501). With the help of numerical simulations, we identify an interesting and important wetting behaviour of the climbing drop; that is, the breaking of symmetry due to the inclination of the plate with respect to the acceleration leads to a hysteresis of the wetted area in one period of harmonic vibration. In particular, the average wetted area in the downhill stage is larger than that in the uphill stage, which is found to be responsible for the uphill net motion of the drop. A new hydrodynamic model is proposed to interpret the ratchet mechanism, taking account of the effects of the acceleration and contact angle hysteresis. The predictions of the theoretical analysis are in good agreement with the numerical results.


Sign in / Sign up

Export Citation Format

Share Document