What Is Tsunami Earthquake?

2021 ◽  
Author(s):  
Toshikazu Ebisuzaki

Abstract A tsunami earthquake is defined as an earthquake which induces abnormally strong tsunami waves compared with its seismic magnitude (Kanamori 1972; Kanamori and Anderson 1975; Tanioka and Seno 2001). We investigate the possibility that the surface waves (Rayleigh, Love, and tsunami waves) in tsunami earthquakes are amplified by secondly submarine landslides, induced by the liquefaction of the sea floor due to the strong vibrations of the earthquakes. As pointed by Kanamori (2004), tsunami earthquakes are significantly stronger in longer waves than 100 s and low in radiation efficiencies of seismic waves by one or two order of magnitudes. These natures are in favor of a significant contribution of landslides. The landslides can generate seismic waves with longer period with lower efficiency than the tectonic fault motions (Kanamori et al 1980; Eissler and Kanamori 1987; Hasegawa and Kanamori 1987). We further investigate the distribution of the tsunami earthquakes and found that most of their epicenters are located at the steep slopes in the landward side of the trenches or around volcanic islands, where the soft sediments layers from the landmass are nearly critical against slope failures. This distribution suggests that the secondly landslides may contribute to the tsunami earthquakes. In the present paper, we will investigate the rapture processes determined by the inversion analysis of seismic surface waves of tsunami earthquakes can be explained by massive landslides, simultaneously triggered by earthquakes in the tsunami earthquakes which took place near the trenches.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Akio Katsumata ◽  
Masayuki Tanaka ◽  
Takahito Nishimiya

AbstractA tsunami earthquake is an earthquake event that generates abnormally high tsunami waves considering the amplitude of the seismic waves. These abnormally high waves relative to the seismic wave amplitude are related to the longer rupture duration of such earthquakes compared with typical events. Rapid magnitude estimation is essential for the timely issuance of effective tsunami warnings for tsunami earthquakes. For local events, event magnitude estimated from the observed displacement amplitudes of the seismic waves, which can be obtained before estimation of the seismic moment, is often used for the first tsunami warning. However, because the observed displacement amplitude is approximately proportional to the moment rate, conventional magnitudes of tsunami earthquakes estimated based on the seismic wave amplitude tend to underestimate the event size. To overcome this problem, we investigated several methods of magnitude estimation, including magnitudes based on long-period displacement, integrated displacement, and multiband amplitude distribution. We tested the methods using synthetic waveforms calculated from finite fault models of tsunami earthquakes. We found that methods based on observed amplitudes could not estimate magnitude properly, but the method based on the multiband amplitude distribution gave values close to the moment magnitude for many tsunami earthquakes. In this method, peak amplitudes of bandpass filtered waveforms are compared with those of synthetic records for an assumed source duration and fault mechanism. We applied the multiband amplitude distribution method to the records of events that occurred around the Japanese Islands and to those of tsunami earthquakes, and confirmed that this method could be used to estimate event magnitudes close to the moment magnitudes.


Author(s):  
Gayaz S. Khakimzyanov ◽  
Oleg I. Gusev ◽  
Sofya A. Beizel ◽  
Leonid B. Chubarov ◽  
Nina Yu. Shokina

AbstractNumerical technique for studying surface waves appearing under the motion of a submarine landslide is discussed. This technique is based on the application of the model of a quasi-deformable landslide and two shallow water models, namely, the classic (dispersion free) one and the completely nonlinear dispersive model of the second hydrodynamic approximation. Numerical simulation of surface waves generated by a large model landslide on the continental slope of the Black Sea near the Russian coast is performed. It is shown that the dispersion has a significant impact on the picture of propagation of tsunami waves on sufficiently long paths.


Author(s):  
Martin Lott ◽  
Philippe Roux ◽  
Stéphane Garambois ◽  
Philippe Guéguen ◽  
Andrea Colombi

Abstract The METAFORET experiment was designed to demonstrate that complex wave physics phenomena classically observed at the meso- and micro-scales in acoustics and in optics also apply at the geophysics scale. In particular, the experiment shows that a dense forest of trees can behave as a locally resonant metamaterial for seismic surface waves. The dense arrangement of trees anchored into the ground creates anomalous dispersion curves for surface waves, which highlight a large frequency band-gap around one resonant frequency of the trees, at ∼45 Hz. This demonstration is carried out through the deployment of a dense seismic array of ∼1000 autonomous geophones providing seismic recordings under vibrating source excitation at the transition between an open field and a forest. Additional geophysical equipment was deployed (e.g. ground-penetrating radar, velocimeters on trees) to provide essential complementary measurements. Insights and interpretations on the observed seismic wavefield, including the attenuation length, the intensity ratio between the field and the forest and the surface wave polarization, are validated with 2D numerical simulations of trees over a layered halfspace.


2017 ◽  
Author(s):  
Arnaud Beckers ◽  
Aurelia Hubert-Ferrari ◽  
Christian Beck ◽  
George Papatheodorou ◽  
Marc de Batist ◽  
...  

Abstract. Coastal and submarine landslides are frequent at the western tip of the Gulf of Corinth, where small to medium failure events (106–107 m3) occur on average every 30–50 years. These landslides trigger tsunamis, and consequently represent a significant hazard. We use here a dense grid of high-resolution seismic profiles to realize an inventory of the large mass transport deposits (MTDs) that result from these submarine landslides. Six large mass wasting events are identified, and their associated deposits locally represent 30 % of the sedimentation since 130 ka in the main western Basin. In the case of a large MTD of ~ 1 km3 volume, the simultaneous occurrence of different slope failures is inferred and suggests an earthquake triggering. However, the overall temporal distribution of MTDs would result from the time-dependent evolution of pre-conditioning factors, rather than from the recurrence of external triggers. Two likely main pre-conditioning factors are (1) the reloading time of slopes, which varied with the sedimentation rate, and (2) dramatic changes in water depth and water circulation that occurred 10–12 ka ago during the last post-glacial transgression. Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources considering the observed volume of the MTDs.


1959 ◽  
Vol 49 (1) ◽  
pp. 1-10
Author(s):  
John De Noyer

Abstract Part II of this paper is concerned with the application of the methods for estimating the energy in seismic waves that were presented in Part I. Numerical results for the energy in the various phases of several earthquakes have been obtained.


Sign in / Sign up

Export Citation Format

Share Document