scholarly journals Rapid estimation of tsunami earthquake magnitudes at local distance

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Akio Katsumata ◽  
Masayuki Tanaka ◽  
Takahito Nishimiya

AbstractA tsunami earthquake is an earthquake event that generates abnormally high tsunami waves considering the amplitude of the seismic waves. These abnormally high waves relative to the seismic wave amplitude are related to the longer rupture duration of such earthquakes compared with typical events. Rapid magnitude estimation is essential for the timely issuance of effective tsunami warnings for tsunami earthquakes. For local events, event magnitude estimated from the observed displacement amplitudes of the seismic waves, which can be obtained before estimation of the seismic moment, is often used for the first tsunami warning. However, because the observed displacement amplitude is approximately proportional to the moment rate, conventional magnitudes of tsunami earthquakes estimated based on the seismic wave amplitude tend to underestimate the event size. To overcome this problem, we investigated several methods of magnitude estimation, including magnitudes based on long-period displacement, integrated displacement, and multiband amplitude distribution. We tested the methods using synthetic waveforms calculated from finite fault models of tsunami earthquakes. We found that methods based on observed amplitudes could not estimate magnitude properly, but the method based on the multiband amplitude distribution gave values close to the moment magnitude for many tsunami earthquakes. In this method, peak amplitudes of bandpass filtered waveforms are compared with those of synthetic records for an assumed source duration and fault mechanism. We applied the multiband amplitude distribution method to the records of events that occurred around the Japanese Islands and to those of tsunami earthquakes, and confirmed that this method could be used to estimate event magnitudes close to the moment magnitudes.

2021 ◽  
Author(s):  
Toshikazu Ebisuzaki

Abstract A tsunami earthquake is defined as an earthquake which induces abnormally strong tsunami waves compared with its seismic magnitude (Kanamori 1972; Kanamori and Anderson 1975; Tanioka and Seno 2001). We investigate the possibility that the surface waves (Rayleigh, Love, and tsunami waves) in tsunami earthquakes are amplified by secondly submarine landslides, induced by the liquefaction of the sea floor due to the strong vibrations of the earthquakes. As pointed by Kanamori (2004), tsunami earthquakes are significantly stronger in longer waves than 100 s and low in radiation efficiencies of seismic waves by one or two order of magnitudes. These natures are in favor of a significant contribution of landslides. The landslides can generate seismic waves with longer period with lower efficiency than the tectonic fault motions (Kanamori et al 1980; Eissler and Kanamori 1987; Hasegawa and Kanamori 1987). We further investigate the distribution of the tsunami earthquakes and found that most of their epicenters are located at the steep slopes in the landward side of the trenches or around volcanic islands, where the soft sediments layers from the landmass are nearly critical against slope failures. This distribution suggests that the secondly landslides may contribute to the tsunami earthquakes. In the present paper, we will investigate the rapture processes determined by the inversion analysis of seismic surface waves of tsunami earthquakes can be explained by massive landslides, simultaneously triggered by earthquakes in the tsunami earthquakes which took place near the trenches.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Alexander Y. Rozhko

Low-frequency shadows are frequently interpreted as attenuation phenomena due to partial saturation with free gas. However, several researchers have argued that shadows are not necessarily a simple attenuation phenomenon because low-frequency energy must have been added or amplified by some physical or numerical process. Attenuation alone should simply attenuate higher frequencies, not boost lower frequencies. The physical or numerical effects explaining this phenomenon are still debatable in literature. To better understand the elastic wave energy's spectral changes in the partially saturated rock, we consider the hysteresis of liquid bridges phenomena inside the crack. We demonstrate that liquid bridges' hysteresis leads to the nonlinear energy exchange between frequencies, explaining wave energy boost at lower frequencies. We show that the energy exchange between different frequencies depends on the wave amplitude and the seismic wave spectrum. The low-frequency energy boost is stronger for a continuous spectrum of seismic waves, smaller for the discrete spectrum, and zero for the monochromatic spectrum of seismic waves. Additionally, we show that at seismic frequencies, the attenuation 1/Q-factor due to friction of the contact line can be much larger than the attenuation due to viscous fluid flow inside the partially saturated crack. Our model depends on the wave amplitude and weakly depends on the wave frequency. The suggested model can help to interpret the low-frequency shadows, bright spots, and attenuation anomalies frequently observed around hydrocarbon fields.


2011 ◽  
Vol 368-373 ◽  
pp. 777-780
Author(s):  
Dong Qiang Xu ◽  
Pin Li

This paper is concerned with the study on internal forces of structure by building model in ANSYS under unidirectional seismic wave, bi-directional seismic waves and two-way and reverse seismic wave. The results revealed that the moment effect of frame structure under bi-directional seismic waves and two-way and reverse seismic wave is bigger around 30% than it under unidirectional seismic wave. And the torque accretion multiple of irregular structure is bigger around 1 than the corresponding regular structure. Therefore, we should take into account the effect of multi-dimensional seismic and the torsional effect of the irregular structure in structure design.


1982 ◽  
Vol 72 (5) ◽  
pp. 1483-1498
Author(s):  
F. Abramovici ◽  
E. R. Kanasewich ◽  
P. G. Kelamis

abstract The displacement components for a horizontal stress discontinuity along a buried finite fault in an elastic homogeneous layer on top of an elastic half-space are given analytically in terms of generalized rays. For a particular case of a concentrated horizontal force pointing in an arbitrary direction, detailed time-dependent expressions are given. For a simple model of a “crustal” layer over a “mantle” half-space, the numerical seismograms in the near- and intermediate-field show some interesting features. These include a prominent group of compressional waves whose radial component is substantial at distances four times the crustal thickness. All the dominant shear arrivals (s, SS, and sSS) are important and show large variations of amplitude as the source depth and receiver distance are varied. Some of the prominent individual generalized rays are shown, and it is found that they can be grouped naturally into families based on the number of interactions with the boundaries. The subdivision into individual generalized rays is useful for analysis and for checks on the numerical stability of the synthetic seismograms. Since the solution is analytic and the numerical evaluation is complete up to any desired time, the results are useful in comparing other approximate methods for the computation of seismograms.


2018 ◽  
Vol 4 (4) ◽  
pp. 95-105
Author(s):  
Александр Сорокин ◽  
Aleksandr Sorokin ◽  
Анатолий Ключевский ◽  
Anatoliy Klyuchevskii ◽  
Владимир Демьянович ◽  
...  

The paper discusses the results of the detection of seismic and infrasonic waves generated by a major earthquake and its aftershock (the moment magnitude MW=4.9 and MW=4.2 respectively), which occurred in northern Mongolia under Lake Hovsgool on December 5, 2014. The joint analysis of waveforms of seismic and infrasonic oscillations has shown that the signal recorded by the infrasound station of the Geophysical Observatory of the Institute of Solar-Terrestrial Physics SB RAS (ISTP SB RAS) is formed from sources of three generation types: local, secondary, and epicentral. This analysis enables us to propose a hypothesis of generation of epicentral infrasonic signal by flexural waves in an elastic ice membrane on the surface of Lake Hovsgool, which appear during the passage of seismic wave packets. This hypothesis explains the similarity between seismic and epicentral infrasonic signals, negative initial phase of epicentral infrasonic waves, and detection of a weak signal after a small-magnitude aftershock.


Author(s):  
Francesca Mancini ◽  
Sebastiano D’Amico ◽  
Giovanna Vessia

ABSTRACT Local seismic response (LSR) studies are considerably conditioned by the seismic input features due to the nonlinear soil behavior under dynamic loading and the subsurface site conditions (e.g., mechanical properties of soils and rocks and geological setting). The selection of the most suitable seismic input is a key point in LSR. Unfortunately, few recordings data are available at seismic stations in near-field areas. Then, synthetic accelerograms can be helpful in LSR analysis in urbanized near-field territories. Synthetic accelerograms are generated by simulation procedures that consider adequately supported hypotheses about the source mechanism at the seismotectonic region and the wave propagation path toward the surface. Hereafter, mainshocks recorded accelerograms at near-field seismic stations during the 2016–2017 Central Italy seismic sequence have been compared with synthetic accelerograms calculated by an extended finite-fault ground-motion simulation algorithm code. The outcomes show that synthetic seismograms can reproduce the high-frequency content of seismic waves at near-field areas. Then, in urbanized near-field areas, synthetic accelerograms can be fruitfully used in microzonation studies.


Author(s):  
Raquel P. Felix ◽  
Judith A. Hubbard ◽  
James D. P. Moore ◽  
Adam D. Switzer

ABSTRACT The frontal sections of subduction zones are the source of a poorly understood hazard: “tsunami earthquakes,” which generate larger-than-expected tsunamis given their seismic shaking. Slip on frontal thrusts is considered to be the cause of increased wave heights in these earthquakes, but the impact of this mechanism has thus far not been quantified. Here, we explore how frontal thrust slip can contribute to tsunami wave generation by modeling the resulting seafloor deformation using fault-bend folding theory. We then quantify wave heights in 2D and expected tsunami energies in 3D for both thrust splays (using fault-bend folding) and down-dip décollement ruptures (modeled as elastic). We present an analytical solution for the damping effect of the water column and show that, because the narrow band of seafloor uplift produced by frontal thrust slip is damped, initial tsunami heights and resulting energies are relatively low. Although the geometry of the thrust can modify seafloor deformation, water damping reduces these differences; tsunami energy is generally insensitive to thrust ramp parameters, such as fault dip, geological evolution, sedimentation, and erosion. Tsunami energy depends primarily on three features: décollement depth below the seafloor, water depth, and coseismic slip. Because frontal ruptures of subduction zones include slip on both the frontal thrust and the down-dip décollement, we compare their tsunami energies. We find that thrust ramps generate significantly lower energies than the paired slip on the décollement. Using a case study of the 25 October 2010 Mw 7.8 Mentawai tsunami earthquake, we show that although slip on the décollement and frontal thrust together can generate the required tsunami energy, <10% was contributed by the frontal thrust. Overall, our results demonstrate that the wider, lower amplitude uplift produced by décollement slip must play a dominant role in the tsunami generation process for tsunami earthquakes.


2021 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Beatriz Quintal ◽  
Sally M. Benson ◽  
Jerome Fortin

<p>Monitoring of the subsurface with seismic methods can be improved by better understanding the attenuation of seismic waves due to fluid pressure diffusion (FPD). In porous rocks saturated with multiple fluid phases the attenuation of seismic waves by FPD is sensitive to the mesoscopic scale distribution of the respective fluids. The relationship between fluid distribution and seismic wave attenuation could be used, for example, to assess the effectiveness of residual trapping of carbon dioxide (CO2) in the subsurface. Determining such relationships requires validating models of FPD with accurate laboratory measurements of seismic wave attenuation and modulus dispersion over a broad frequency range, and, in addition, characterising the fluid distribution during experiments. To address this challenge, experiments were performed on a Berea sandstone sample in which the exsolution of CO2 from water in the pore space of the sample was induced by a reduction in pore pressure. The fluid distribution was determined with X-ray computed tomography (CT) in a first set of experiments. The CO2 exosolved predominantly near the outlet, resulting in a heterogeneous fluid distribution along the sample length. In a second set of experiments, at similar pressure and temperature conditions, the forced oscillation method was used to measure the attenuation and modulus dispersion in the partially saturated sample over a broad frequency range (0.1 - 1000 Hz). Significant P-wave attenuation and dispersion was observed, while S-wave attenuation and dispersion were negligible. These observations suggest that the dominant mechanism of attenuation and dispersion was FPD. The attenuation and dispersion by FPD was subsequently modelled by solving Biot’s quasi-static equations of poroelasticity with the finite element method. The fluid saturation distribution determined from the X-ray CT was used in combination with a Reuss average to define a single phase effective fluid bulk modulus. The numerical solutions agree well with the attenuation and modulus dispersion measured in the laboratory, supporting the interpretation that attenuation and dispersion was due to FPD occurring in the heterogenous distribution of the coexisting fluids. The numerical simulations have the advantage that the models can easily be improved by including sub-core scale porosity and permeability distributions, which can also be determined using X-ray CT. In the future this could allow for conducting experiments on heterogenous samples.</p>


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6801
Author(s):  
Krzysztof Fuławka ◽  
Witold Pytel ◽  
Bogumiła Pałac-Walko

The impact of seismicity on structures is one of the key problems of civil engineering. According to recent knowledge, the reliable analysis should be based on both rotational and translational components of the seismic wave. To determine the six degrees of freedom (6-DoF) characteristic of mining-induced seismicity, two sets of seismic posts were installed in the Lower Silesian Copper Basin, Poland. Long-term continuous 6-DoF measurements were conducted with the use of the R-1 rotational seismometer and EP-300 translational seismometer. In result data collection, the waveforms generated by 39 high-energy seismic events were recorded. The characteristic of the rotational component of the seismic waves were described in terms of their amplitude and frequency characteristics and were compared with translational measurements. The analysis indicated that the characteristic of the rotational component of the seismic wave differs significantly in comparison to translational ones, both in terms of their amplitude and frequency distribution. Also, attenuation of rotational and translational components was qualitatively compared. Finally, the empirical formulas for seismic rotation prediction in the Lower Silesian Copper Basin were developed and validated.


Sign in / Sign up

Export Citation Format

Share Document