Creep Damage Assessment of Notched Material Made of a Solidification Control Ni-Base Superalloy Using the EBSD Method

Author(s):  
Daisuke Kobayashi ◽  
Tsutomu Takeuchi ◽  
Katsushi Nakabeppu

Changes in misorientation with deformation were measured by various misorientation analysis methods using the electron backscattered diffraction (EBSD) method, and quantitative assessments were attempted to estimate the amount of strain or damage. Misorientations were correlated with macroscopic plastic or creep strains for comparative well-strained materials such as austenitic stainless steels. Ni-base superalloys used for components requiring high temperature strength such as gas turbine blades, have low ductility with precipitation of the γ’ phase in grains, therefore the change of crystal orientation was considered to be extremely suppressed in comparison with austenitic stainless steels. In addition, it was anticipated that the extremely large grains of Ni-base superalloys made it difficult to properly assess the damage as misorientation. However, with the current advances in the EBSD acquisition systems in conjunction with scanning electron microscopy, it has become possible to make unprecedented resolved measurements of the local crystal structure distribution at a millimeter scale. In particular, in order to assess the damage of gas turbine blades, the complex blade inner cooling system complicates the distribution of temperatures and stresses in the blades, which implies that it is required to assess the influence of geometry at stress concentrated regions in addition to the condition of temperatures, stresses and creep fatigue wave forms. To date, in the case of the conventional casting material or the same geometry notched specimen of the directionally solidified (DS) superalloy, the average misorientation which means the grain reference orientation deviation (GROD) within grains in a certain predetermined evaluation area including the notch increases linearly up to the initiation of creep cracks regardless of the testing temperatures, strain rates and the effect of fatigue under the creep dominant condition. However, the different notch geometry of the DS superalloy shows the different characteristics of the misorientation development. This paper focuses on a misorientation parameter which can assess the creep crack initiation life independent of the geometry at stress concentrated regions. In order to assess the creep crack initiation life at various stress concentrated areas of the DS superalloy, the development of a unified life assessment method independent of the individual notch geometries was discussed. As a result of this study, a parameter dividing the GROD by the initial notch opening value, φ0, was proposed and it was confirmed that the proposed parameter, GROD/φ0 shows similar characteristics with the relative notch opening displacement (RNOD) curves which correspond to the local strain energy and the initiation of creep crack at the notch tip independent of the geometry at a stress concentrated region.

2016 ◽  
Vol 92 ◽  
pp. 262-271 ◽  
Author(s):  
D. Holländer ◽  
D. Kulawinski ◽  
A. Weidner ◽  
M. Thiele ◽  
H. Biermann ◽  
...  

2002 ◽  
Vol 2002.2 (0) ◽  
pp. 241-242
Author(s):  
Takashi OGATA ◽  
Takayuki SAKAI ◽  
Masatsugu YAGUCHI

Author(s):  
Joseph A. Daleo ◽  
Keith A. Ellison ◽  
Donald H. Boone

Metallurgical analysis of rotating blades operating in advanced gas turbine engines is important in establishing actual operating conditions, degradation modes, remaining life, and most importantly, the proper repair and rejuvenation techniques to be used in developing optimum component life strategics. The elevated firing temperatures used in the latest engine designs result not only in very high metal surface temperatures but also in very high temperature gradients and concomitant thermal strains induced in part by the complex and efficient cooling systems. This has changed the primary function of today’s superalloy-coating systems from one of hot corrosion protection to moderating high temperature oxidation reactions. Furthermore, as a result of the high thermal strains induced by the cooling systems, long term metallurgical structural stability issues now revolve around optimizing both thermal mechanical fatigue (TMF) resistance and creep life. Thus the gradual change to Directionally Solidified (DS) and Single Crystal (SC) alloys throughout the industry. The use of DS and SC alloys coated with state of the art TBC, platinum modified aluminide and MCrAlY coatings with or without subsequent aluminizing applied by vacuum plasma spray (VPS), high velocity oxygen fuel (HVOF), physical vapor deposition (PVD), air plasma spray (APS) and by chemical vapor deposition (CVD) methods along with the wide spread use of internal aluminide coatings have made today’s rotating components prohibitively expensive to replace after only one cycle of operation. It is therefore, or should now be a high priority for all cost conscience gas turbine users to help develop reliable repair and rejuvenation strategies and techniques to minimize their operating cost. Traditional metallurgical considerations required for life assessment and the reliable refurbishment and re-qualification of gas turbine blades are reviewed along with some new exciting techniques. Examples of component degradation modes are presented. Appropriate attention to metallurgical issues allows turbine users to more successfully and economically operate their turbines.


2002 ◽  
Vol 124 (3) ◽  
pp. 571-579 ◽  
Author(s):  
J. A. Daleo ◽  
K. A. Ellison ◽  
D. H. Boone

Metallurgical analysis of rotating blades operating in advanced gas turbine engines is important in establishing actual operating conditions, degradation modes, remaining life, and most importantly, the proper repair and rejuvenation techniques to be used in developing optimum component life strategies. The elevated firing temperatures used in the latest engine designs result not only in very high metal surface temperatures but also in very high temperature gradients and concommitant thermal strains induced in part by the complex and efficient cooling systems. This has changed the primary function of today’s superalloy-coating systems from one of hot corrosion protection to moderating high temperature oxidation reactions. Furthermore, as a result of the high thermal strains induced by the cooling systems, long-term metallurgical structural stability issues now revolve around optimizing both thermal mechanical fatigue (TMF) resistance and creep life. Thus the gradual change to directionally solidified (DS) and single crystal (SC) alloys throughout the industry. The use of DS and SC alloys coated with state of the art TBC, platinum modified aluminide and MCrAlY coatings with or without subsequent aluminizing applied by vacuum plasma spray (VPS), high velocity oxygen fuel (HVOF), physical vapor deposition (PVD), air plasma spray (APS), and by chemical vapor deposition (CVD) methods along with the widespread use of internal aluminide coatings have made today’s rotating components prohibitively expensive to replace after only one cycle of operation. It is therefore, or should now be a high priority for all cost conscious gas turbine users to help develop reliable repair and rejuvenation strategies and techniques to minimize their operating cost. Traditional metallurgical considerations required for life assessment and the reliable refurbishment and requalification of gas turbine blades are reviewed along with some new exciting techniques. Examples of component degradation modes are presented. Appropriate attention to metallurgical issues allows turbine users to more successfully and economically operate their turbines.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document