Effect of Blend Radius on Stress Concentration Factor of Crossbored Holes in Thick Walled Pressure Vessels

Author(s):  
Daniel T. Peters

Many studies have been performed on the effect of stress concentration factor in thick walled cylinders caused by holes drilled to the wall perpendicular to the vessel ID, commonly called crossbores. Recent developments in FEA analysis and computer technology have allowed detailed analysis in their effect on the stresses in pressure vessels. This allows the reevaluation of many theories developed in the past. The following is a study of how applying a blend radius to the inside intersection of a vessel bore and a crossbore affects the stresses in vicinity of the hole and the stress concentrations developed near the hole.

Author(s):  
Pierre-Louis Auvret ◽  
Antonio Carlucci ◽  
Jun Li ◽  
Kamel MCirdi

Engineering design must take care of local peaks within stress field, in order to provide relevant forecast of material behavior. Within pipeline girth welds, pipe misalignment is an ordinary cause of significant stress concentrations. The matching of pipe ends depends of the quality of alignment procedure but it is also much influenced by pipe fabrication tolerances. In general, misalignment is estimated considering the maximal and minimal values of each pipe size according to pipe fabrication tolerances. But, in practice, the probability to get a such case is very low. This paper describes how to improve the calculation of stress concentration factor (SCF) through a statistical analysis of pipe dimensions. The use of actual pipe measurements is not necessary even if it provides better SCF estimation. Indeed the distribution of pipe size can be estimated through the fabrication tolerances which require acceptable capacities of the manufacturing system.


2016 ◽  
Vol 36 (9) ◽  
pp. 933-941 ◽  
Author(s):  
Pan Yusong ◽  
Chen Yan ◽  
Shen Qianqian ◽  
Pan Chengling

Abstract Biomaterials used as loading-bearing orthopedic implants usually require various excellent properties such as mechanical, bioactive and bio-tribological performances. Moreover, all of the orthopedic applications feature stress concentrations (notch sensitivity) in their design. In the present work, hydroxyapatite-reinforced polyetheretherketone functional gradient biocomposites (HA/PEEK FGBm) were successfully prepared by the layer stacking method combined with hot pressing molding technology. The effects of notch geometry on the stress-strain behavior of HA/PEEK FGBm were evaluated. The fracture morphology was investigated by scanning electron microscopy (SEM). The study of the stress-strain behavior indicated that the tensile and flexural stresses of HA/PEEK FGBm linearly increased with increasing strain under all the notch sensitivities. The fracture strain of the biocomposites decreased with increasing stress concentration factor and total HA content in the functional biocomposites. Moreover, the tensile and flexural strengths of HA/PEEK FGBm were lower than those of homogeneous HA/PEEK biocomposites. The SEM observation of the fracture micro-morphology showed that the fracture mechanism of HA/PEEK FGBm was gradually controlled by the brittle fracture process. Furthermore, both the tensile and the flexural strengths of HA/PEEK FGBm decreased with the increase in stress concentration factor and total HA content in the biocomposites.


2020 ◽  
Author(s):  
Miroslav Randic ◽  
Duško Pavletić ◽  
Marko Fabić

Abstract Surface cracks in butt-welded joints usually occur in places with increased stress concentrations. The stress concentration factor (SCF) can be calculated using an empirical equation, with five geometric parameters of a butt-welded joint (thickness of the base material, toe radius, weld toe angle, weld width, and reinforcement height). However, in anindustrial environment, it is impractical and sometimes even impossible to measure all five geometric parameters with sufficient accuracy. In this study, eight experiments on butt-welded joints were performed. All samples were scanned with a 3D scanner, and the geometric sizes of the welded joints were measured using computer software. A modified empirical expression proposed by Ushirokawa and Nakayama was used to calculate the SCF; the expression was adjusted in such a way that the SCF was calculated by knowing only the toe radius. In addition, four new expressions were proposed for the calculation of the SCF by knowing the toe radius in relation to the weld toe angle; the expressions were then compared and analysed. Additionally, the values of the stress concentrations in the butt-welded joints were obtained using afinite element method (FEM). The SCFs calculated using the four methods were compared and further discussed. Our data suggested a new accurate and straightforward approach for calculating the SCF by knowing only the weld toe radius.


2015 ◽  
Vol 1105 ◽  
pp. 381-385
Author(s):  
Djamel Ouinas ◽  
Bel Abbès Bachir Bouiadjra ◽  
A. Albedah ◽  
Mohamed Sahnoun

Several analytical, numerical and experimental techniques are available to study the stress concentration around the notches. The stress distribution in a rectangular composite laminated plate with a central notch was studied using the finite element method. The objective of this study is to analyze the fibre orientation effect on the variation of stress concentrations at the notch root and the J-integral at the crack-tip emanating from this notch in a plate subjected to tensile loading. The results show that the anisotropic stress concentration factor can be higher or lower than that of a homogeneous material. The area of maximum normal and tangential stresses could shift with fibre orientation with respect to the loading axis. The interaction effect between a crack located on the ligament of the plate and the circular notch of radius is considered.The results indicate that fold sequence influences appreciably the acceleration or the retardation of the crack propagation.


2000 ◽  
Vol 35 (2) ◽  
pp. 143-147 ◽  
Author(s):  
P Stanley ◽  
A G Starr

An empirical equation has been obtained for the elastic stress concentration factor at an isolated oblique circular-cylindrical hole in a thick flat plate subjected to a uniform, arbitrarily oriented uniaxial tension. The equation is presented and its development is outlined in this note.


1965 ◽  
Vol 180 (1) ◽  
pp. 497-512 ◽  
Author(s):  
F. A. Leckie ◽  
D. J. Payne

In this paper the design of a spherical pressure vessel pierced by a radial cylindrical nozzle is discussed. The nozzles considered end flush with the inside of the vessel. Previous work on stress concentration factors, shakedown factors and limit pressure factors has been drawn together and presented in a compact form convenient for the use of designers. These results have been used to discuss the implications of designing to a certain stress concentration factor and to show that this procedure is very reasonable when a concentration factor of 2.25 is used.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 411
Author(s):  
Miroslav Randić ◽  
Duško Pavletić ◽  
Marko Fabić

Surface cracks in butt-welded joints usually occur in places with increased stress concentrations. The stress concentration factor (SCF) can be calculated using an empirical equation, with five geometric parameters of a butt-welded joint (thickness of the base material, toe radius, weld toe angle, weld width, and reinforcement height). However, in an industrial environment, it is impractical and sometimes even impossible to measure all five geometric parameters with sufficient accuracy. In this study, eight experiments on butt-welded joints were performed. All samples were scanned with a 3D scanner, and the geometric sizes of the welded joints were measured using computer software. A modified empirical expression proposed by Ushirokawa and Nakayama was used to calculate the SCF; the expression was adjusted in such a way that the SCF was calculated by knowing only the toe radius. In addition, four new expressions were proposed for the calculation of the SCF by knowing the toe radius in relation to the weld toe angle; the expressions were then compared and analyzed. Additionally, the values of the stress concentrations in the butt-welded joints were obtained using a finite element method (FEM). The SCFs calculated using the four methods were compared and further discussed. Our data suggested a new accurate and straightforward approach for calculating the SCF by knowing only the weld toe radius.


1962 ◽  
Vol 66 (617) ◽  
pp. 323-326 ◽  
Author(s):  
Ralph Papirno

SummaryUsing relations derived by Dixon and Inglis, the values of the elastic stress concentration factor for a fixed length notch in a finite width tensile strip with a varying notch end radius have been obtained in the form:Photoelastic tests on internally notched tensile strip models showed excellent agreement with the analytical results.


Author(s):  
Xiaotong Huo ◽  
Shawn Kenny ◽  
Amgad Hussein ◽  
Michael Martens

Wall thickness transition joints are used to connect energy pipeline segments; such as straight pipe to fittings with different wall thicknesses. The transition joint may be subject to axial forces and bending moments that may result in a stress concentration across the transition weld and may exceed stress based design criteria. Current engineering practices, such as CSA Z662, ASME B31.4, and ASME B31.8, recommend the use of back-bevel transition welded connections. An alternative transition weld configuration is the counterbore-taper design that is intended to reduce the stress concentration across the transition. In this study, the relative mechanical performance of these two transition design options (i.e., back-bevel and counterbore-taper) is examined with respect to the limiting burst pressure and effect of stress concentrations due to applied loads. The assessment is conducted through numerical parameter study using 3D continuum finite element methods. The numerical modelling procedures are developed using Abaqus/Standard. The performance of continuum brick elements (C3D8I, C3D8RH, C3D20R) and shell element (S4R) are evaluated. The continuum brick element (C3D8RI) was the most effective in terms of computational requirements and predictive qualities. The burst pressure limits of the transition weld designs were evaluated through a parameter study examining the significance of pipe diameter to wall thickness ratio (D/t), wall thickness mismatch ratio (t2/t1), material Grade 415 and Grade 483 and end-cap boundary condition effects. The limit load analysis indicated the burst pressure was effectively the same for both transition weld designs. The effect of pipe diameter, D/t, t2/t1, and counterbore length on the stress concentration factor, for each transition weld design, was also assessed. The results demonstrate the improved performance of the counterbore-taper weld transition; relative to the back-bevel design as recommended by current practice, through the relative decrease in the stress concentration factor. The minimum counterbore length was found to be consistent with company recommended practices and related to the pipe diameter and wall thickness mismatch.


Sign in / Sign up

Export Citation Format

Share Document