girth welds
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 72)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11780
Author(s):  
Jianping Liu ◽  
Hong Zhang ◽  
Shengsi Wu ◽  
Xianbin Zheng ◽  
Dong Zhang ◽  
...  

Crack defects in the girth welds of pipelines have become an important factor affecting the safe operation of in-service oil pipelines. Therefore, it is necessary to analyze the factors affecting the safe operation of pipelines and determine the ultimate load during pipeline operation. Based on the failure assessment diagram (FAD) method described in the BS 7910 standard, the key factors affecting the evaluation results of the suitability of X65 pipeline girth welds are analyzed, and the effects of crack size, pipe geometry, and material properties on the evaluation results are investigated. The results indicate that the crack depth is more crucial to the safe operation of the pipeline than the crack length. While the effect of wall thickness is not significant, the misalignment can seriously aggravate the stress concentration. In general, the higher the yield ratio and tensile strength of the pipe material, the more dangerous the condition at the weld. The ultimate axial load that a crack-containing girth weld can withstand under different combinations of the above factors was determined. Furthermore, a data driven model via the optimized support vector regression method for the ultimate axial load of the X65 pipe was developed for engineering application, and the comparison results between the FEM results and the predicted results proved its accuracy and reliability.


Author(s):  
Jun Cao ◽  
Weifeng Ma ◽  
Kang Zhao ◽  
Ke Wang ◽  
Ke Cai ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Niels Pörtzgen ◽  
Ola Bachke Solem

Abstract During the construction of pipelines for the transportation of oil and gas, the inspection of girth welds is a critical step to ensure the integrity and thereby the safety and durability of the pipeline. In this paper we present an advanced technology ‘IWEX’ for the non-destructive testing of welds based on 2D and 3D ultrasonic imaging. This technology allows for safe, fast, and accurate inspection whereby the results are presented comprehensively. This will be illustrated with results from a recent project. The IWEX technology is based on an ultrasonic inspection concept, whereby ‘fingerprints’ of ultrasonic signals are recorded, also referred to as ‘full matrix capture’ (FMC) data. Then, an image area is defined, consisting out of pixels over an area large enough to cover the inspection volume. With the FMC data, image amplitudes are calculated for each pixel so that the shape of geometry (back wall, front wall, cap, and root) and possible indications are revealed. As opposed to traditional ultrasonic testing strategies, the detection and sizing of indications is therefore less dependent on its orientation. The project concerned the inspection of J and V welds from a 5.56″ diameter carbon steel pipe with an 8.4mm wall thickness. The wall thickness is relatively thin compared to common inspection scopes. Therefore, the inspection set-up was adapted, and procedural changes were proposed. Consequently, additional validation efforts were required to demonstrate compliance with the required inspection standard; DNVGL-ST-F101: 2017. As part of this, welds were scanned with seeded indications and the reported locations were marked for macro slicing under witnessing of an independent representative from DNVGL. The resulting images from the indications in the welds showed great detail with respect to the position, orientation and height of the indications. A quantitative comparison with the results from the macro slices was performed, including a statistical analysis of the height sizing and depth positioning accuracies. From the analysis, it could be observed that the expected improvements with respect to the resolution and sizing accuracy were indeed achieved. Thereby, the procedure has proven to be adequate for the inspection of carbon steel girth welds within the thin wall thickness range (~6mm to ~15mm). The IWEX technology is a member of the upcoming inspection strategy based on imaging of ultrasonic FMC data. This strategy can be considered as the next step in the evolution of inspection strategies after phased array inspection. The IWEX technology has been witnessed and qualified by independent 3rd parties like DNVGL, this makes the IWEX technology unique in its kind and it opens opportunities for further acceptance in the industry and other inspection applications.


2021 ◽  
Author(s):  
Sachin Bhardwaj ◽  
R.M. Chandima Ratnayake

Abstract Maintaining minimum allowable distance between proximity welds has always been considered a subject of debate between design engineers, welding engineers/inspectors and fabricators/engineering contractors. The scattered nature of guidelines available in welding codes and standards for maintain minimum allowable distance pose a significant challenge in the welding procedure and inspection criteria development process. This is especially critical for complex welded joints on submerged sections of offshore structures, in compact layouts/branched connections of topside piping components, and on topside structural joints (depending on the complexity). This manuscript presents the findings of an experimental study that was performed by fabricating two girth welds at a proximity on an S355 steel tubular section having diameter of 219.1 mm and thickness of 8.18 mm. Proximity girth welds were fabricated on S355 tubular sections at three different distances between their weld toe as 5, 10 & 15mm respectively using two different welding procedures. Welding procedure qualification record (WPQR) was performed, and all prescribed mechanical tests were recorded as per NORSOK M-101, a structural steel fabrication code. Although all results from mechanical test met minimum specified values as defined in the NORSOK code, research findings revealed noticeable difference in Charpy and hardness values for proximity region between adjacent welds. Considerable changes in final microstructure morphology were observed between proximity welds due to successive thermal cycles. These observations can form basis for future welding procedure qualification of critical welded joints, especially for proximity welds on critical welded joints of offshore structures and welds fabricated during replacement/repair procedures in compact piping layouts.


2021 ◽  
Author(s):  
Richard Jones ◽  
Dr Thurairajah Sriskandarajah ◽  
Dr Daowu Zhou ◽  
James Hymers ◽  
Kieran Munro ◽  
...  

Abstract This paper presents an innovative defect growth ECA methodology for pipeline girth welds and its validation programme, applied specifically to reeling ECA of pipelines with under-matched strength welds. The ECA method is a tear-fatigue approach that accounts for the blunting limit in JR curves during pipe spooling and reel-lay. Fatigue crack growth may occur by low cycle high stress fatigue and by tearing, but the latter only if the crack tip opening displacement exceeds the blunting limit. Conventional ECA with BS7910 is limited because the weld's strength needs to be over-matched. Alternative industry methods for the application of FEA to under-matched strength welds are computationally more intensive than the presented innovative approach. Fatigue crack growth for low cycle high stress fatigue is calculated using Paris’ Law in the approach but, if the crack tip opening due to the tearing mechanism is less than the blunting limit then tearing growth is zero. With the innovative method, if the crack tip opening displacement exceeds the blunting limit then the tearing defect growth is included. Hence, the method is a combined tear-fatigue approach. Welded pipe strings were fabricated from pups composed of clad material; i.e. carbon backing steel pipe with a 3 mm layer of corrosion resistant alloy (CRA) on the inner circumference. Each test string was approximately 10.5m long and fabrication was from a mix of six 0.5m length pups in the central zone of each string and two longer end pups. Three girth welds included EDM notches for test purposes which simulated planar flaws. The notches were on the extreme tension fibre, as the test string gets pulled to the reel former in a reeling test rig. Full scale reeling simulations involved pulling the test strings up to 6 times to the reel former in a reeling test rig. Measurement of defect growth associated with the EDM notches was by scanning electron microscope (SEM), from specimen segments extracted from the test strings. Predictions of defect growth were by finite element models in combination with pipe-specific data that was the outcome of an associated small-scale test programme. Validation of the ECA-by-FEA approach is by a predictive best estimate study, for which there is excellent agreement between the measured values and the calculated defect growths. The ECA-by-FEA approach is conservative for project work, as shown by a high estimate study and an offset blunting limit study. Early development of the ECA approach was for small diameter CRA pipelines during the execution of the Guara-Lula project (Sriskandarajah et al, 2015). The presented full-scale tests, innovative defect growth measurement by scanning electron microscope and the FEA and defect growth calculations were full validation of the approach, with pipe strings that had outer diameter of 323.9mm.


Author(s):  
Hailiang Nie ◽  
Weifeng Ma ◽  
Kai Xue ◽  
Junjie Ren ◽  
Wei Dang ◽  
...  

2021 ◽  
Author(s):  
Harpreet Sidhar ◽  
Neerav Verma ◽  
Chih-Hsiang Kuo ◽  
Michael Belota ◽  
Andrew Wasson
Keyword(s):  

2021 ◽  
Author(s):  
Banglin Liu ◽  
Bo Wang ◽  
Yong-Yi Wang ◽  
Otto Jan Huising

Sign in / Sign up

Export Citation Format

Share Document