Accelerated Limit Loads Using Repeated Elastic Finite Element Analyses

Author(s):  
Prasad Mangalaramanan

This paper demonstrates the limitations of repeated elastic finite element analyses (REFEA) based limit load determination that uses the classical lower bound theorem. The r-node method is prescribed as an alternative for obtaining better limit load estimates. Lower bound aspects pertaining to r-nodes are also discussed.

Author(s):  
Sathya Prasad Mangalaramanan

Abstract Statically admissible stress distributions are necessary to evaluate lower bound limit loads. Over the last three decades, several methods have been postulated to obtain these distributions using iterative elastic finite element analyses. Some of the pioneering techniques are the reduced modulus, r-node, elastic compensation, and linear matching methods, to mention a few. A new method, called the Bounded Elastic Moduli Multiplier Technique (BEMMT), is proposed and the theoretical underpinnings thereof are explained in this paper. BEMMT demonstrates greater robustness, more generality, and better stress distributions, consistently leading to lower-bound limit loads that are closer to elastoplastic finite element analysis estimates. BEMMT also questions the validity of the prevailing power law based stationary stress distributions. An accompanying research offers several case studies to validate this claim.


2002 ◽  
Vol 124 (4) ◽  
pp. 433-439 ◽  
Author(s):  
L. Pan ◽  
R. Seshadri

The procedures described in this paper for determining a limit load is based on Mura’s extended variational formulation. Used in conjunction with linear elastic finite element analyses, the approach provides a robust method to estimate limit loads of mechanical components and structures. The secant modulus of the various elements in a finite element discretization scheme is prescribed in order to simulate the distributed effect of the plastic flow parameter, μ0. The upper and lower-bound multipliers m0 and m′ obtained using this formulation converge to near exact values. By using the notion of “leap-frogging” to limit state, an improved lower-bound multiplier, mα, can be obtained. The condition for which mα is a reasonable lower bound is discussed in this paper. The method is applied to component configurations such as cylinder, torispherical head, indeterminate beam, and a cracked specimen.


1993 ◽  
Vol 17 (2) ◽  
pp. 197-214
Author(s):  
C.P.D. Fernando ◽  
R. Seshadri

An approximate method for determining limit loads of mechanical components and structures on the basis of two linear elastic finite element analyses is described. The load-control nature of the redistribution nodes (r-nodes) leads to considerable simplifications. The combined r-node equivalent stress, which can be obtained by invoking an appropriate multibar mode, can be identified with the reference stress. The method is applied to beam, framed and arched structures, and the limit load estimates obtained are reasonably accurate.


Author(s):  
R. Seshadri ◽  
M. M. Hossain

Limit load determination of mechanical components and structures by the mα-tangent method is proposed herein. The proposed technique is a simplified method that enables rapid determination of limit loads for a general class of mechanical components and structures. The method makes use of statically admissible stress field based on a linear elastic finite element analysis to estimate the limit loads. The method is applied to a number of mechanical component configurations and the results compare well with those obtained by the corresponding elastic-plastic finite element analyses results.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
R. Seshadri ◽  
M. M. Hossain

Limit load determination of mechanical components and structures by the mα-tangent method is proposed herein. The proposed technique is a simplified method that enables rapid determination of limit loads for a general class of mechanical components and structures. The method makes use of statically admissible stress field based on a linear elastic finite element analysis to estimate the limit loads. The method is applied to a number of mechanical component configurations and the results compare well with those obtained by the corresponding elastic-plastic finite element analyses results.


Author(s):  
Phuong H. Hoang ◽  
Bostjan Bezensek ◽  
Howard J. Rathbun

Finite element analyses (FEA) have been used to study the effects of multi-axial loadings on bending limit load of local wall thinned pipes. It has been shown by investigators that torsion can be combined with bending moments using SRSS (Square Root of the Sum of the Squares) method for planar flaws with a limited axial extent. The treatment of torsion for non-planar flaws, which exceed the axial extent limit, will be a subject for future investigations. Since the reported FEA results are for various pipe sizes, flaw shapes with different mesh sizes, element types and computer codes, a set of benchmark problems was proposed and analyzed by participating investigators. The benchmark analysis results are presented in this paper.


Author(s):  
Shunjie Li ◽  
Changyu Zhou ◽  
Jian Li ◽  
Xinting Miao

The effect of bend angle on plastic limit loads of pipe bends (elbows) under in-plane opening and closing bending moment is presented using three-dimensional large strain nonlinear finite element analyses. The results show that the presence of ovality significantly leads to the stress concentration in the middle cross section, which is the critical section of pipe bends. Meanwhile the state of stress concentration is also associated with the loading modes including the in-plane opening bending moment and the closing bending moment. Then plastic limit loads of pipe bends are further studied. It is found that plastic limit loads are decreasing with the increase of bend angles. Especially the variation of plastic limit loads of small angle pipe bends (bend angle from the 0 degree to 90 degree) is larger than that of large angle pipe bends (bend angle greater than 90 degree). Based on the finite element results, the present plastic limit load solutions are not fit for the large angle pipe bends (bend angle greater than 90 degree).


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Doo-Ho Cho ◽  
Young-Hwan Choi ◽  
Nam-Su Huh ◽  
Do-Jun Shim ◽  
Jae-Boong Choi

The plastic limit load solutions for cylinder and plate with slanted through-wall cracks (TWCs) are developed based on the systematic three-dimensional (3D) finite element (FE) limit analyses. As for loading conditions, axial tension, global bending, and internal pressure are considered for a cylinder with slanted circumferential TWC, whereas, axial tension and internal pressure are considered for a plate and a cylinder with slanted axial TWC. Then, the verification of FE model and analysis procedure employed in the present numerical work was confirmed by employing the existing solutions for both cylinder and plate with idealized TWC. Also, the geometric variables of slanted TWC which can affect plastic limit loads were considered. Based on the systematic FE limit analysis results, the slant correction factors which represent the effect of slanted TWC on plastic limit load were provided as tabulated solutions. By adopting these slant correction factors, the plastic limit loads of slanted TWC can be directly estimated from existing solutions for idealized TWC. Furthermore, the modified engineering estimations of plastic limit loads for slanted TWC are proposed based on equilibrium equation and von Mises yield criterion. The present results can be applied either to diverse structural integrity assessments or for accurate estimation of fracture mechanics parameters such as J-integral, plastic crack opening displacement (COD) and C*-integral for slanted TWC based on the reference stress concept (Kim, et al., 2002, “Plastic Limit Pressure for Cracked Pipes Using Finite Element Limit Analyse,” Int. J. Pressure Vessels Piping, 79, pp. 321–330; Kim, et al., 2001, “Enhanced Reference Stress-Based J and Crack Opening Displacement Estimation Method for Leak-Before-Break Analysis and Comparison With GE/EPRI Method,” Fatigue Fract. Eng. Mater. Struct., 24, pp. 243–254; Kim, et al., 2002, “Non-Linear Fracture Mechanics Analyses of Part Circumferential Surface Cracked Pipes,” Int. J. Fract., 116, pp. 347–375.)


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
P. S. Reddy Gudimetla ◽  
R. Adibi-Asl ◽  
R. Seshadri

In this paper, a method for determining limit loads in the components or structures by incorporating strain hardening effects is presented. This has been done by including a certain amount of the strain hardening into limit load analysis, which normally idealizes the material to be elastic perfectly plastic. Typical strain hardening curves such as bilinear hardening and Ramberg–Osgood material models are investigated. This paper also focuses on the plastic reference volume correction concept to determine the active volume participating in plastic collapse. The reference volume concept in combination with mα-tangent method is used to estimate lower-bound limit loads of different components. Lower-bound limit loads obtained compare well with the nonlinear finite element analysis results for several typical configurations with/without crack.


Sign in / Sign up

Export Citation Format

Share Document