framed structures
Recently Published Documents


TOTAL DOCUMENTS

675
(FIVE YEARS 82)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
S. Venkatesh ◽  
Ms. T. Savithra

Generally RC framed structures are designed without regards to structural action of masonry infill walls present. Masonry infill walls are widely used as partitions. These buildings are generally designed as framed structures without regard to structural action of masonry infill walls. They are considered as non- structural elements. RC frame building with open first storey is known as soft storey, which performs poorly during strong earthquake shaking. Past earthquakes are evident that collapses due to soft storeys are most often in RC buildings. In the soft storey, columns are severely stressed and unable to provide adequate shear resistance during the earthquake. Hence a combination of two structural system components i.e. Rigid frames and RC shear walls or Rigid frames and Bracings leads to a highly efficient system in which shear wall and bracings resist the majority of the lateral loads and the frame supports majority of the gravity loads.


2021 ◽  
Vol 249 ◽  
pp. 113291
Author(s):  
S. Ravasini ◽  
J. Sio ◽  
L. Franceschini ◽  
B.A. Izzuddin ◽  
B. Belletti

Author(s):  
Zhaohui Chen ◽  
Min He ◽  
Yuchen Tao ◽  
Y. B. Yang

In this paper, by implanting the rigid body rule (RBR)-based strategy for static nonlinear problems into the implicit direct integration procedure, an efficient and robustness nonlinear dynamic analysis method for the response of framed structures with large deflections and rotations is proposed. The implicit integration method proposed by Newmark is improved by inserting an intermediate time into the time step and by adding the 3-point backward difference in the second substep so as to preserve the momentum conservation and to maintain the stability of the direct integration method. To solve the equivalent incremental equations of motion, the RBR is built in to deal with the rigid rotations and the resulting additional nodal forces of element. During the increment-iterative procedure, the use of RBR-qualified geometric stiffness in the predictor reduces the numbers of iterations, while the elastic stiffness alone in the corrector to update the element nodal forces makes the computation efficiency and convergence with no virtual forces caused by the ill geometric stiffness. The proposed algorithm is advanced in the applications of several framed structures with highly nonlinear behavior in the dynamic response by its simplicity, efficient and robustness.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 567-590
Author(s):  
Sofia Antonodimitraki ◽  
Pavlos Thanopoulos ◽  
Ioannis Vayas

The behaviour of steel structures is affected by two nonlinearities—the geometric and material nonlinearity—and by the unavoidable presence of imperfections. To evaluate the ultimate capacity of a structure, these effects should be taken into consideration during the design process, either explicitly in the analysis or implicitly through the verification checks. In this context, Eurocode 3 provides several design approaches of different complexity and accuracy. The advantages and disadvantages of these approaches are discussed. Five different methods in conformity with the Eurocode provisions are applied for the design of four moment resisting steel frames of varying slenderness. The influence of nonlinearities and imperfections in respect to the slenderness of the structure is illustrated. The examined methods are compared in terms of the predicted ultimate capacity and their efficiency is assessed against the most accurate between them, i.e., an advanced geometrically and materially nonlinear analysis. It is shown that considerable differences arise between the methods. Nevertheless, except for the commonly used 2nd order analysis followed by cross-section verifications, the remaining methods are mostly on the safe side.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012148
Author(s):  
G Frunzio ◽  
L Di Gennaro

Abstract The great interest about out of plane behavior of masonry infill walls has recently increased since it is a key point in the seismic modelling of framed structures. Their contribute to the whole seismic resistance of a framed building cannot be skipped. After a review of the literature on the subject, this paper presents a trilinear constitutive model for the out of plane behavior of masonry infills based on the tensile strength of the constituents. Comparisons with literature model are provided and the identification of the model is based on experimental tests.


2021 ◽  
pp. 311-323
Author(s):  
T. Anusha ◽  
H. G. Nahushananda Chakravarthy

2021 ◽  
pp. 97-121
Author(s):  
Homayoon E. Estekanchi ◽  
Hassan A. Vafai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document