Numerical Simulation of Three-Dimensional Flow Past an Oscillating Cylinder

Author(s):  
Sofia Peppa ◽  
Lambros Kaiktsis ◽  
George Triantafyllou

The paper presents computational results of three-dimensional flow past a cylinder forced to oscillate: (a) transversely with respect to a uniform stream, and (b) both transversely and in-line with respect to a uniform stream, following a figure-eight trajectory. For a flow from left to right the figure-eight is traversed counter-clockwise in the upper half-plane. DNS of the Navier-Stokes equations for three–dimensional flow is performed using a spectral element code. Computations are carried out for a Reynolds number equal to 400, at a transverse oscillation frequency equal to the natural frequency of the Kármán vortex street. For both oscillation modes, the transverse oscillation amplitude is varied from zero to 0.60 cylinder diameters. The forces on the cylinder are calculated and related to flow structure in the wake. The results indicate that, in general, the presence of in-line oscillation increases the magnitude of forces acting on the cylinder, as well as the power transfer from the flow to the structure. Flow visualizations indicate that, for the figure-eight mode, low-amplitude forcing tends to reduce the wake three-dimensionality. However, at high oscillation amplitudes, the wake structure is found to become more complex at increasing amplitude.

Author(s):  
Sofia Peppa ◽  
Lambros Kaiktsis ◽  
Christos Frouzakis ◽  
George Triantafyllou

DNS results are presented for three-dimensional flow past a circular cylinder forced to oscillate both in the transverse and in-line direction with respect to a uniform stream, at Reynolds number equal to 400, and are compared against simulation results for two-dimensional flow. The cylinder follows a figure-eight motion, traversed either counter-clockwise or clockwise in the upper half-plane for a flow stream from left to right. The transverse oscillation frequency is equal to the natural frequency of the Kármán vortex street. The Navier-Stokes equations are solved using a spectral element code, and the forces acting on the cylinder are computed for both three- and two-dimensional flow. The results demonstrate that the effect of cylinder oscillation on the flow structure and forces differs substantially between the counter-clockwise and the clockwise oscillation mode. For the counter-clockwise mode, forcing at low amplitude decreases the flow three-dimensionality, with the wake becoming increasingly three-dimensional for transverse oscillation amplitudes higher than 0.25–0.30 cylinder diameters, with corresponding discrepancies in forces with respect to two-dimensional flow. For the case of clockwise mode, a strong stabilizing effect is found: the wake becomes two-dimensional for a transverse oscillation amplitude of 0.20 cylinder diameters, and remains so at higher amplitudes, resulting in nearly equal values of the force coefficients for three- and two-dimensional flow.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
S. Peppa ◽  
L. Kaiktsis ◽  
G. S. Triantafyllou

The paper presents computational results of 3D flow past a cylinder forced to oscillate: (a) transversely with respect to a uniform stream and (b) both transversely and in-line with respect to a uniform stream, following a figure-eight trajectory. For a flow from left to right the figure-eight is traversed counterclockwise in the upper half-plane. Direct numerical simulation (DNS) of the Navier–Stokes equations for 3D flow is performed using a spectral element code. Computations are carried out for a Reynolds number equal to 400, at a transverse oscillation frequency equal to the natural frequency of the Kármán vortex street. For both oscillation modes, the transverse oscillation amplitude is varied from 0 to 0.60 cylinder diameters. The forces on the cylinder are calculated and related to flow structure in the wake. The results indicate that, in general, the presence of in-line oscillation increases the magnitude of forces acting on the cylinder, as well as the power transfer from the flow to the structure. Flow visualizations indicate that, for the figure-eight mode, low-amplitude forcing tends to reduce the wake three-dimensionality. However, at high oscillation amplitudes, the wake structure is found to become more complex at increasing amplitude.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 107
Author(s):  
Sofia Peppa ◽  
Lambros Kaiktsis ◽  
Christos E. Frouzakis ◽  
George S. Triantafyllou

The paper presents a computational study of three-dimensional flow past a cylinder forced to oscillate in a uniform stream, following a figure-eight trajectory. Flow simulations were performed for Re = 400, for different cases, defined in terms of the oscillation mode (‘counter-clockwise’ or ‘clockwise’), for values of the ratio, F, of the transverse oscillation frequency to the Strouhal frequency close to 1.0. The results demonstrate that, for F ≤ 1.0, counter-clockwise cylinder motion is associated with positive power transfer from the flow to the cylinder, corresponding to excitation; for the clockwise motion, power transfer is negative at intermediate to high amplitudes, corresponding to damping. For the clockwise mode, in the range F = 0.9–1.1, a transition to two-dimensional vortex street is identified for transverse oscillation amplitude exceeding a critical value. This results from the induced suction of vortices, which moves vortex formation and shedding closer to the cylinder surface, thus resulting in a narrower wake, characterized by an effective lower Reynolds number. Both oscillation modes are characterized by higher harmonics in the lift force spectrum, with the third harmonic being very pronounced, while even harmonics are present for the case of clockwise mode, resulting from a wake transition to a “S + P” mode.


2000 ◽  
Vol 122 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M. Greiner ◽  
R. J. Faulkner ◽  
V. T. Van ◽  
H. M. Tufo ◽  
P. F. Fischer

Navier-Stokes simulations of three-dimensional flow and augmented convection in a channel with symmetric, transverse grooves on two opposite walls were performed for 180⩽Re⩽1600 using the spectral element technique. A series of flow transitions was observed as the Reynolds number was increased, from steady two-dimensional flow, to traveling two and three-dimensional wave structures, and finally to three-dimensional mixing. Three-dimensional simulations exhibited good agreement with local and spatially averaged Nusselt number and friction factor measurements over the range 800⩽Re⩽1600. [S0022-1481(00)00904-X]


Sign in / Sign up

Export Citation Format

Share Document