flow transitions
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 931 ◽  
Author(s):  
Yabiao Zhu ◽  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xiyun Lu ◽  
...  

Direct numerical simulation of spanwise-rotation-driven flow transitions in viscoelastic plane Couette flow from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow state followed by full relaminarization is reported for the first time. Specifically, this novel flow transition begins with a drag-reduced inertial turbulent flow state at a low rotation number $0\leqslant Ro \leqslant 0.1$ , and then transitions to a rotation/polymer-additive-driven drag-enhanced inertial turbulent regime, $0.1\leqslant Ro \leqslant 0.3$ . In turn, the flow transitions to a drag-enhanced elasto-inertial turbulent state, $0.3\leqslant Ro \leqslant 0.9$ , and eventually relaminarizes at $Ro=1$ . In addition, two novel rotation-dependent drag enhancement mechanisms are proposed and substantiated. (1) The formation of large-scale roll cells results in enhanced convective momentum transport along with significant polymer elongation and stress generated in the extensionally dominated flow between adjacent roll cells at $Ro\leqslant 0.2$ . (2) Coriolis-force-generated turbulent vortices cause strong incoherent transport and homogenization of significant polymer stress in the bulk via their vortical circulations at $Ro=0.5 - 0.9$ .


2021 ◽  
Vol 2 (6) ◽  
pp. 290-299
Author(s):  
Venera R. Amineva ◽  

The characteristics of a new type of literary discourse having a feature of transculturality is given on the material of a poem “Prayer for the Cup” (1989–1991) a significant work by R. Bukharaev. A global, multicultural and international world is reconstructed in the poem, the existence of which is determined by the idea of transitivity — simultaneity and continuous flow, transitions from one into another: epochs, events, topos, languages. The hero of this world — is a lonely stranger, walking along the road of life, linearly opening the autonomous world of his “I”. the history of his spiritual travel correlates with the way of Christ full of suffering. The poem is full of historical and literary allusions and reminiscences from the world literary works, performing an identifying function. It is stated that identification performed by different elements of a literary text is carried out both “on the borders”, “in the interval” between different traditions, as well as “within the limits”, “inside” a homogeneous culture. Therefore, it is multiple, and meanwhile fundamentally incomplete, “split”, “fluid”, “intermediate”, “flickering”, probabilistically multiple, constantly questioning its status and revealing the growing plasticity of the subject, who is in the process of constantly recreating its own “I”. A new form of worldview, the product of which is a phenomenon of transcultural literature, is formed by synthesizing tendency. It functions within the artistic world of the poem and overcomes the boundaries between different types of culture and traditions, demonstrating the way new meanings overcome it, tolerant in their content and functions, can be appear from confrontation. An ability of an artistic image to endless mutual overflowing and transformations of meaning is a new quality of poetic language corresponding to the peculiarities of the transcultural type of artistic consciousness.


2021 ◽  
Vol 929 ◽  
Author(s):  
Tom Lacassagne ◽  
Theofilos Boulafentis ◽  
Neil Cagney ◽  
Stavroula Balabani

Particle suspensions in non-Newtonian liquid matrices are frequently encountered in nature and industrial applications. We here study the Taylor–Couette flow (TCF) of semidilute spherical particle suspensions (volume fraction $\leq 0.1$ ) in viscoelastic, constant-viscosity liquids (Boger fluids). We describe the influence of particle load on various flow transitions encountered in TCF of such fluids, and on the nature of these transitions. Particle addition is found to delay the onset of first- and second-order transitions, thus stabilising laminar flows. It also renders them hysteretic, suggesting an effect on the nature of bifurcations. The transition to elasto-inertial turbulence (EIT) is shown to be delayed by the presence of particles, and the features of EIT altered, with preserved spatio-temporal large scales. These results imply that particle loading and viscoelasticity, which are known to destabilise the flow when considered separately, can on the other hand compete with one another and ultimately stabilise the flow when considered together.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaohui Cheng ◽  
Shize Xiao ◽  
Alex Sixie Cao ◽  
Meiying Hou

AbstractGranular shear flows exhibit complex transitional regimes that are dramatically affected by the pressure level and shear stress state. New advances in granular shear tests at low pressure have enlightened the understanding of the two granular shear flow transitions: between quasi-static and moderate shear flows, and between steady-state and transient shear flows. However, a unified constitutive model to describe these two transitions is yet to develop. In this work, a simplified and unified model is proposed based on innovative triaxial shear flow tests, using two dimensionless physical variables. Model results validated against experimental data suggest that the shear flow transition between a quasi-static to a moderate Isotach type flow state is highly pressure-dependent. At extremely low pressure, the granular viscosity becomes the primary mechanism, suppressing the quasi-static mechanism even under “quasi-static” shear rates. In transient to steady state granular flow transitions, a mobilized shear stress ratio or mobilized friction coefficient between zero and the critical state ratio for consolidated granular packings is taken into consideration. This is coupled with the mechanism of granular viscosity. These findings have not been discussed before and are of great relevance to granular mechanics as well as space and earthquake engineering.


2021 ◽  
Author(s):  
Maria Gema Llorens ◽  
Albert Griera ◽  
Paul D. Bons ◽  
Ilka Weikusat ◽  
David Prior ◽  
...  

Abstract. Creep due to ice flow is generally thought to be the main cause for the formation of crystallographic preferred orientations (CPOs) in polycrystalline anisotropic ice. However, linking the development of CPOs to the ice flow history requires a proper understanding of the ice aggregate's microstructural response to flow transitions. In this contribution the influence of ice deformation history on the CPO development is investigated by means of full-field numerical simulations at the microscale. We simulate the CPO evolution of polycrystalline ice under combinations of two consecutive deformation events up to high strain, using the code VPFFT/ELLE. A volume of ice is first deformed under co-axial boundary conditions, which results in a CPO. The sample is then subjected to different boundary conditions (co-axial or non-coaxial) in order to observe how the deformation regime switch impacts on the CPO. The model results indicate that the second flow event tends to destroy the first, inherited fabric, with a range of transitional fabrics. However, the transition is slow when crystallographic axes are critically oriented with respect to the second imposed regime. Therefore, interpretations of past deformation events from observed CPOs must be carried out with caution, particularly, in areas with complex deformation histories.


2021 ◽  
Vol 33 (9) ◽  
pp. 093105
Author(s):  
J. D. Tank ◽  
B. F. Klose ◽  
G. B. Jacobs ◽  
G. R. Spedding

2021 ◽  
Vol 2 (1) ◽  
pp. 86-104
Author(s):  
Mohammad Sanjeed Hasan ◽  
◽  
Sabrina Rashid ◽  
Shamsun Naher Dolon ◽  
Ratan Kumar Chanda ◽  
...  

Fluid flow analysis through a bend pipe is extensively conducted in practical and cell separation operations. It is observed that flow behaviors in the bend pipe are influenced by some parameters such as curvature, aspect ratio, etc. As a result, various phenomena, steady solution branches, unsteady solutions, energy transfer are changed. In this paper, the acts of flows are performed together for fixed curvature, δ = 0.2, and Prandtl number, Pr = 7.0 (water). Here, for a wide variety of Dean numbers (100 ≤ Dn ≤ 1000) and three fixed Grashof numbers, Gr = 100, 500, and 1000; time-independent solutions with linear stabilities are investigated first where only the first steady branch exhibits linear stability out of two steady solution branches obtained. Then, different flow transitions between the required range of Dean numbers (Dn) and several Grashof numbers (Gr) are investigated using time-dependent solutions. Power spectrum density (PSD) is further revealed in order to gain a deeper understanding of periodic and multi-periodic flows. Flow velocity contours including axial flow (AF) and secondary flow (SF) and their temperature profiles (TP) are also exposed. The SFs reveal that two- to four-vortex flows are produced due to the turning of steady branch and the flow instabilities. Furthermore, the energy transfer between the cooled and heated sidewalls of the pipe is calculated. Finally, a link between centrifugal and body force with the energy transfer has been shown in this research which reveals that the fluid has merged that certainly rises the overall energy transfer.


2021 ◽  
Vol 53 (1) ◽  
pp. 347-376
Author(s):  
Mark C. Thompson ◽  
Thomas Leweke ◽  
Kerry Hourigan

This review surveys the dramatic variations in wake structures and flow transitions, in addition to body forces, that appear as the motion of bluff bodies through a fluid occurs increasingly closer to a solid wall. In particular, we discuss the two cases of bluff bodies translating parallel to solid walls at varying heights and bluff bodies impacting on solid walls. In the former case, we highlight the changes to the wake structures as the flow varies from that of an isolated body to that of a body on or very close to the wall, including the effects when the body is rotating. For the latter case of an impacting body, we review the flow structures following impact and their transition to three-dimensionality. We discuss the issue of whether there is solid–solid contact between the bluff body and a wall and its importance to body motion.


Sign in / Sign up

Export Citation Format

Share Document