Subject-Specific Experimental Validation of a C27 Cervical Spine Finite Element Model

Author(s):  
Nicole A. Kallemeyn ◽  
Kiran H. Shivanna ◽  
Anup A. Gandhi ◽  
Swathi Kode ◽  
Nicole M. Grosland

Computational simulations of the spine have the ability to quantify both the external (i.e. angular rotation) and internal (i.e. stresses and strains) responses to external loading. This is an advantage over cadaveric bench top studies, which are limited to studying mostly external responses. Finite element (FE) analysis has been used extensively to investigate the behavior of the normal cervical spine in addition to its diseased and degenerated states [1,2].

2011 ◽  
Vol 9 (67) ◽  
pp. 351-361 ◽  
Author(s):  
O. Panagiotopoulou ◽  
S. D. Wilshin ◽  
E. J. Rayfield ◽  
S. J. Shefelbine ◽  
J. R. Hutchinson

Finite element modelling is well entrenched in comparative vertebrate biomechanics as a tool to assess the mechanical design of skeletal structures and to better comprehend the complex interaction of their form–function relationships. But what makes a reliable subject-specific finite element model? To approach this question, we here present a set of convergence and sensitivity analyses and a validation study as an example, for finite element analysis (FEA) in general, of ways to ensure a reliable model. We detail how choices of element size, type and material properties in FEA influence the results of simulations. We also present an empirical model for estimating heterogeneous material properties throughout an elephant femur (but of broad applicability to FEA). We then use an ex vivo experimental validation test of a cadaveric femur to check our FEA results and find that the heterogeneous model matches the experimental results extremely well, and far better than the homogeneous model. We emphasize how considering heterogeneous material properties in FEA may be critical, so this should become standard practice in comparative FEA studies along with convergence analyses, consideration of element size, type and experimental validation. These steps may be required to obtain accurate models and derive reliable conclusions from them.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2017 ◽  
Vol 17 (11) ◽  
pp. 1755-1764 ◽  
Author(s):  
Timothy L. Lasswell ◽  
Duane S. Cronin ◽  
John B. Medley ◽  
Parham Rasoulinejad

2012 ◽  
Vol 45 ◽  
pp. S526
Author(s):  
R. Allena ◽  
L. Duchemin ◽  
V. Bousson ◽  
D. Mitton ◽  
J.D. Laredo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document