heterogeneous material
Recently Published Documents


TOTAL DOCUMENTS

425
(FIVE YEARS 117)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Kuan Zhao ◽  
Yubiao Zhang ◽  
Youjun Zhao ◽  
...  

The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.


Author(s):  
Elsa Anglade ◽  
Alain Sellier ◽  
Jean-Emmanuel Aubert ◽  
Aurélie Papon

Due to its ecological interest and large availability, a renewed attention is paid to earth as building material. Indeed, raw earth consumes CO2 only during its processing and transportation, and it provides a natural hygrothermal comfort. However, its mechanical properties are highly linked to its composition, which causes an important variability of performances. That is why any soil has to be characterized before being used as a building material. The aim of this study is to propose a model able to predict the hydromechanical behavior of a reconstituted soil according to its composition. As earth is a heterogeneous material, the model is based on homogenization procedures. The sand is considered as spherical inclusions inside a clay matrix. The particularity of the model stands to consider both positive and negative effects of volume variation and mechanical properties of clay under hydric variations. The model parameters are determined according to an original experimental campaign, which is conducted on various mixes of a single type of clay (kaolinite) and of sand, and water. The experimental study provides some mechanical properties of the mixes versus water content and sand content to test the ability of the homogenization model to assess the main properties of this material.


2021 ◽  
Author(s):  
Santhosh Kumar M V ◽  
A. Alhadhrami ◽  
Shankaramurthy G J ◽  
M G Thriveni ◽  
B.M. Prasanna

Abstract Nanoparticles of Ni1-xZnxCe0.1Fe1.9O4 ferrite substituted with Zn2+ ion concentrations (0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) have been synthesised via aqueous citrate precursor auto combustion method. The obtained Powder X-ray diffraction data suggests a good crystalline phase; the crystallite size exists in the range of 14~38 nm. The lattice constant of samples increases with Zn2+ concentration. It validates Vegard's law and the decreasing trends in porosity of the samples are identified. The inhomogeneity in the grains was confirmed from FE-SEM. The EDS spectrogram attributes the good stoichiometry in the product. The Thermogravimetric analysis reveals that the crystallization occurred within the temperature 800˚C. The high-temperature DC conductivity of the samples shows that NTC behaviour. The Curie temperature and activation energy are estimated and the activation energy of carriers are found to be more at the paramagnetic region. The magnetic saturation ('Ms*') has maximum for Zn2+ = 0.2 (57.7 emu/g) and coercive field (Hc) related with a radius of occupancy of Zn2+ ion validates the relation Hc∝1/r and also, the value of the remanence ratio suggests that isotropic magnetization took place in the heterogeneous material.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Timo Saksala

This paper deals with numerical prediction of temperature (weakening) effects on the tensile strength of granitic rock. A 3D numerical approach based on the embedded discontinuity finite elements is developed for this purpose. The governing thermo-mechanical initial/boundary value problem is solved with an explicit (in time) staggered method while using extreme mass scaling to increase the critical time step. Rock fracture is represented by the embedded discontinuity concept implemented here with the linear (4-node) tetrahedral elements. The rock is modelled as a linear elastic (up to fracture by the Rankine criterion) heterogeneous material consisting of Quartz, Feldspar and Biotite minerals. Due to its strong and anomalous temperature dependence upon approaching the α-β transition at the Curie point (~573 °C), only Quartz in the numerical rock depends on temperature in the present approach. In the numerical testing, the sample is first volumetrically heated to a target temperature. Then, the uniaxial tension test is performed on the cooled down sample. The simulations demonstrate the validity of the proposed approach as the experimental deterioration, by thermally induced cracking, of the rock tensile strength is predicted with a good accuracy.


2021 ◽  
pp. 1-40
Author(s):  
Zhonghui Yuan ◽  
Qinyi Huang ◽  
Xudong Liang ◽  
Zheng Zhong

Abstract Skin tissue is a complex heterogeneous material abundant with fibers. Various models capturing its anisotropy, nonlinearity, viscoelasticity have been developed. However, the existence of multiple fiber families and the differences among them have been largely ignored. Furthermore, inhomogeneous deformation over the thickness is observed in the skin under shear deformation, which the traditional skin models do not predict. In this paper, we propose that two fiber families with distinct mechanical and structural properties exist in the skin within the framework of a general structure tensor-based constitutive strain energy model. Our constitutive model considers distinct properties of fiber families and the consequent inhomogeneous deformation in the skin, showing good agreement with in vivo measurements of human face skin.


Author(s):  
Yahong Xue ◽  
Xudong Wang ◽  
Shicheng Yan ◽  
Jutao Wang ◽  
Haibo Zhou

Abstract As the self-lubricating layer of self-lubricating spherical plain bearings, fabric liner shows obvious heterogeneous anisotropic characteristics, so it is a technical difficulty to predict its wear properties. In this paper, the continuous wear of self-lubricating fabric liner was simulated based on the mesoscopic scale wear model. The macroscopic wear properties of the fabric liner were characterized by establishing a representative volume element (RVE), and subsequently imposing periodic boundary restrictions (PBCs) on periodic surfaces. In order to avoid excessive mesh distortion, voxel grids meshing method was used, and then continuous wear of the heterogeneous material was realized by adjusting node coordinates and combining nodes. Detailed comparison between simulation prediction results and wear test data of fabric liner was made. The good correlation of the results confirmed that the mesoscopic scale wear model could be used in accurately predict the tribological performance of fabric composite.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1261
Author(s):  
Nuraly S. Akimbekov ◽  
Ilya Digel ◽  
Kuanysh T. Tastambek ◽  
Dinara K. Sherelkhan ◽  
Dariya B. Jussupova ◽  
...  

Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production.


2021 ◽  
Vol 2 (6) ◽  
pp. 237
Author(s):  
Kanon Nakazawa ◽  
Satoshi Okuzumi ◽  
Kosuke Kurosawa ◽  
Sunao Hasegawa

Abstract A projectile impact onto a granular target produces an ejecta curtain with heterogeneous material distribution. Understanding how the heterogeneous pattern forms is potentially important for understanding how crater rays form. Previous studies predicted that the pattern formation is induced by inelastic collisions of ejecta particles in early stages of crater formation and terminated by the ejecta’s expanding motion. In this study, we test this prediction based on a hypervelocity impact experiment together with N-body simulations where the trajectories of inelastically colliding granular particles are calculated. Our laboratory experiment suggests that pattern formation is already completed on a timescale comparable to the geometrical expansion of the ejecta curtain, which is ∼10 μs in our experiment. Our simulations confirm the previous prediction that the heterogeneous pattern grows through initial inelastic collisions of particle clusters and subsequent geometric expansion with no further cluster collisions. Furthermore, to better understand the two-stage evolution of the mesh pattern, we construct a simple analytical model that assumes perfect coalescence of particle clusters upon collision. The model shows that the pattern formation is completed on the timescale of the system’s expansion independently of the initial conditions. The model also reproduces the final size of the clusters observed in our simulations as a function of the initial conditions. It is known that particles in the target are ejected at lower speeds with increased distance to the impact point. The difference in the ejection speed of the particles may result in the evolution of the mesh pattern into rays.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042013
Author(s):  
A Golyshev ◽  
A Malikov

Abstract The paper presents the analysis of the physical and mechanical properties of the heterogeneous material based on the ceramics TiB, TiB2, TiC, B4C and metal alloy Ti-6Al-4V formed by the SLM method. The effect of ceramic particles TiB, TiB2, TiC, B4C resulting from in situ synthesis under the laser action on the microstructure and hardness of the formed metal-matrix composite has been studied. Under discussion are the main mechanisms of change of the microstructure with secondary ceramic insertions, the hardness is measured at the micro-level.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012066
Author(s):  
E E Damaskinskaya ◽  
V L Hilarov ◽  
I A Panteleev ◽  
D V Korost ◽  
K A Damaskinskii

Abstract By using two methods of nondestructive testing, i.e., acoustic emission (AE) measurements and X-ray computed microtomography (CT), an experimental study of defect accumulation during a uniaxial compression of a natural heterogeneous material was carried out. A joint analysis of the AE and CT data revealed a correspondence between energy characteristics of the acoustic emission accompanying defect formation and volume of defects. It is shown that the dependence of the total energy of AE signals on the defect volume is linear, which is consistent with the phenomenological dependences for earthquake focuses obtained earlier. The linear dependence was used to estimate the average defect size. It is shown that, regardless of the assumed defect shape, its average linear size does not exceed 100 μm.


Sign in / Sign up

Export Citation Format

Share Document