Modeling of Orthostatic Intolerance During Lower Body Negative Pressure

Author(s):  
Karen E. Etter ◽  
M. Keith Sharp

Postflight orthostatic intolerance (POI) afflicts a significant fraction of male astronauts and nearly all female astronauts when they first stand on Earth after spaceflight. Symptoms include dizziness and fainting, which can impact their abilities to perform critical tasks during the post-landing period. On the Moon or Mars, poor performance or accidents resulting from POI may have potentially catastrophic consequences due to the more hazardous conditions and lack of medical facilities. In addition, the long duration flights necessary to reach Mars may elicit adaptations that increase the risk of POI. Of the many factors that may influence POI, one of the few that may explain the gradual decline in arterial blood pressure experienced by many subjects during stand tests is the loss of blood volume by capillary filtration. Previous simulations suggest that elevated capillary filtration rates distinguish nonfinishers from finishers of stand tests [1, 2]. In this investigation, further computer modeling was undertaken to compare modeled orthostatic response to that of volunteers during graded orthostatic stress (GOS) involving head up tilt (HUT) and lower body negative pressure (LBNP), which reliably produces presyncope and is a candidate training countermeasure for preventing POI.

2007 ◽  
Vol 103 (6) ◽  
pp. 1964-1972 ◽  
Author(s):  
Donald E. Watenpaugh ◽  
Deborah D. O'Leary ◽  
Suzanne M. Schneider ◽  
Stuart M. C. Lee ◽  
Brandon R. Macias ◽  
...  

Orthostatic intolerance follows actual weightlessness and weightlessness simulated by bed rest. Orthostasis immediately after acute exercise imposes greater cardiovascular stress than orthostasis without prior exercise. We hypothesized that 5 min/day of simulated orthostasis [supine lower body negative pressure (LBNP)] immediately following LBNP exercise maintains orthostatic tolerance during bed rest. Identical twins (14 women, 16 men) underwent 30 days of 6° head-down tilt bed rest. One of each pair was randomly selected as a control, and their sibling performed 40 min/day of treadmill exercise while supine in 53 mmHg (SD 4) [7.05 kPa (SD 0.50)] LBNP. LBNP continued for 5 min after exercise stopped. Head-up tilt at 60° plus graded LBNP assessed orthostatic tolerance before and after bed rest. Hemodynamic measurements accompanied these tests. Bed rest decreased orthostatic tolerance time to a greater extent in control [34% (SD 10)] than in countermeasure subjects [13% (SD 20); P < 0.004]. Controls exhibited cardiac stroke volume reduction and relative cardioacceleration typically seen after bed rest, yet no such changes occurred in the countermeasure group. These findings demonstrate that 40 min/day of supine LBNP treadmill exercise followed immediately by 5 min of resting LBNP attenuates, but does not fully prevent, the orthostatic intolerance associated with 30 days of bed rest. We speculate that longer postexercise LBNP may improve results. Together with our earlier related studies, these ground-based results support spaceflight evaluation of postexercise orthostatic stress as a time-efficient countermeasure against postflight orthostatic intolerance.


1990 ◽  
Vol 68 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
M. J. Joyner ◽  
J. T. Shepherd ◽  
D. R. Seals

The purpose of this study was to determine whether prolonged unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP) causes constant increases in sympathetic outflow to skeletal muscles. Eight healthy subjects underwent a 20-min control period followed by 20 min of 15-mmHg LBNP. This pressure was selected because it did not cause any significant change in mean arterial blood pressure (sphygmomanometry) or heart rate, suggesting that the cardiopulmonary baroreceptors were selectively unloaded and the activity of the arterial baroreceptors was unchanged. Muscle sympathetic nerve activity in the peroneal nerve (MSNA, microneurography) increased from an average of 21.8 +/- 1.7 bursts/min over the last 5 min of control to 29.0 +/- 2.9 bursts/min during the 1st min of LBNP (P less than 0.05 LBNP vs. control). The increase in MSNA observed during the 1st min was sustained throughout LBNP. Forelimb blood flow (plethysmography) decreased abruptly at the onset of the LBNP from a control value of 4.3 +/- 0.5 ml.min-1.100 ml-1 to 2.5 +/- 0.2 at the 1st min; the flow then increased and remained significantly above this value, but below the control value, throughout LBNP. Similar blood flow findings were obtained in additional studies, when the hand circulation was excluded during the flow measurements. Forearm skin blood flow (laser Doppler) also decreased abruptly at the onset of LBNP and was followed by partial recovery, but these changes were too small to account for all the increases in limb blood flow over the course of LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 27 ◽  
pp. 115-121 ◽  
Author(s):  
Kazuyoshi Yajima ◽  
Akira Miyamoto ◽  
Masao Ito ◽  
Takaichi Mano ◽  
Kiyoshi Nakayama

1992 ◽  
Vol 83 (5) ◽  
pp. 535-540 ◽  
Author(s):  
P. J. Lacolley ◽  
B. M. Pannier ◽  
M. A. Slama ◽  
J. L. Cuche ◽  
A. P. G. Hoeks ◽  
...  

1. Pulsatile changes in the diameter of the common carotid artery were studied transcutaneously using an echo-tracking technique in 15 normal subjects: eight subjects before and during application of graded lower-body negative pressure from −5 to −15 mmHg, and seven subjects before and during weight-bearing head-up tilt at 30 and 60 degrees. 2. In concomitant studies of changes in forearm vascular resistance, it was seen that mild lower-body negative pressure produced deactivation of cardiopulmonary receptors without changes in systemic blood pressure or heart rate. 3. After lower-body negative pressure, a significant decrease in carotid arterial diastolic diameter [from 0.662 ± 0.028 to 0.624 ± 0.033 cm (lower-body negative pressure −10 mmHg) and 0.640 ± 0.030 cm lower-body negative pressure −15 mmHg), P<0.001 and <0.05] was observed. 4. After head-up tilt, carotid arterial diameter was also significantly decreased at 30 and 60 degrees, whereas a significant increase in heart rate occurred only at 60 degrees and mean blood pressure did not change. 5. The study provides evidence that the geometry of the arterial wall is substantially modified by noninvasive manoeuvres such as head-up tilting and lower-body negative pressure. The latter is assumed to selectively deactivate human cardiopulmonary receptors, but the present data suggest that local changes may also influence carotid baroreceptors.


2019 ◽  
Vol 316 (3) ◽  
pp. H609-H616 ◽  
Author(s):  
Taylor Elyse Schlotman ◽  
Kevin S. Akers ◽  
Shawn C. Nessen ◽  
Victor A. Convertino

Women generally display lower tolerance to acute central hypovolemia than men. The measurement of compensatory reserve (CRM) is a novel metric that provides information about the sum total of all mechanisms that together work to compensate for the relative blood volume deficit. Hemodynamic decompensation occurs with depletion of the CRM (i.e., 0% CRM). In the present study, we hypothesized that the lower tolerance to progressive central hypovolemia reported in women can be explained by a faster reduction rate in CRM compared with men rather than sex differences in absolute integrated compensatory responses. Continuous, noninvasive measures of CRM were collected from 208 healthy volunteers (107 men and 85 women) who underwent progressive stepwise central hypovolemia induced by lower body negative pressure to the point of presyncope. Comparisons revealed shorter ( P < 0.01) times in female participants compared with male participants to reach 30% and 0% CRM. Similarly, the lower body negative pressure level, represented by the cumulative stress index, was less at 30% and 0% CRM in women compared with men ( P < 0.01). Changes in hemodynamic responses and frequency-domain data (oscillations in cerebral blood flow velocity and mean arterial blood pressure) were similar between men and women at 0% CRM ( P > 0.05). We conclude that compensatory responses to central hypovolemia in women were similar to men but were depleted at a faster rate compared with men. The earlier depletion of the compensatory reserve in women appears to be influenced by failure to maintain adequate cerebral oxygen delivery. NEW & NOTEWORTHY We compared hemodynamic and metabolic responses in men and women to experimentally controlled reductions in central blood volume at physiologically equivalent levels of compensatory reserve. We corroborated previous findings that females have lower tolerance to central hypovolemia than males but demonstrated for the first time that compensatory responses are similar. Our findings suggest lower tolerance to central hypovolemia in women results from reaching critical cerebral delivery of oxygen faster than men.


2011 ◽  
Vol 41 (8) ◽  
pp. 863-869 ◽  
Author(s):  
Andreas Roessler ◽  
Nandu Goswami ◽  
Bernd Haditsch ◽  
Jack A. Loeppky ◽  
Friedrich C. Luft ◽  
...  

2003 ◽  
Vol 14 (9) ◽  
pp. 920-924 ◽  
Author(s):  
PAUL LELORIER ◽  
GEORGE J. KLEIN ◽  
ANDREW KRAHN ◽  
RAYMOND YEE ◽  
ALLAN SKANES ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 040-048
Author(s):  
Wang Linjie ◽  
Li Zhili ◽  
Tan Cheng ◽  
Wang Huijuan ◽  
Zhou Xiangjie ◽  
...  

Introduction: Alternatively using gradient lower-body negative pressure (LBNP) and ergometer exercise (LBNP + ergo) under a flight schedule framework was explored to detect its orthostatic capacity maintenance effects in female subjects after 15 days of -6° head-down bed rest (HDBR). Methods: Twenty-two female university students were divided into a control group (n = 8), an LBNP group (n = 7), and an LBNP + ergo group (n = 7). Ergometer exercise consisted of an interval exercise protocol with 2 min intervals alternating between 41% and 70% VO2max. Gradient LBNP was decompressed in 10 mm Hg intervals to -40 mmHg every 5 min. intermittent ergometer exercise and LBNP were alternatively performed. Tilt test was performed 2 days before HDBR (R-2), on the day of HDBR termination (R+1), and 5 days after HDBR (R+5). Results: Fifty percent of the participants (11/22) did not pass the tilt test on R+1. The orthostatic tolerance time decreased from 20 to 16.1 ± 2.1 min in the control group, to 10.0 ± 2.7 min in the LBNP group (p = 0.01) and to 16.3 ± 2.0 min in the LBNP + ergo group. The HRs and BPs were at similar level among three groups during tilt test on different test days. Compared with the control group, the LBNP + ergo group had higher SV and CO percentage changes at R+1(p < 0.023) and R+5 (p < 0.00001) during the tilt test. Conclusion: LBNP combined with ergometer exercises fails to prevent orthostatic intolerance but it induced some positive hemodynamic changes during tilt test after 15 days HDBR.


Sign in / Sign up

Export Citation Format

Share Document