Feasibility of Structural Health Monitoring of High Strain Rate Events Using Fiber Bragg Grating Sensors

Author(s):  
James Ayers ◽  
Tusit Weerasooriya ◽  
Anindya Ghoshal ◽  
Collin Pecora ◽  
Allan Gunnarsson ◽  
...  

Strategically located Fiber Bragg Grating (FBG) Sensors have been proposed as an in situ method to increase the signal to noise ratio (SNR) for metallic and composite components. This paper presents a systematic study that investigates the viability of FBG Sensors under high strain rate loading by initially measuring 1D-strains in a compression Hopkinson bar experiment, followed by 2D full-field strain-tensor in impact and blast experiments on plates. Specifically, high strain rates from commercialized FBG Sensors are compared to traditional resistive and semi-conductor based strain gages under various levels of 1D high strain rate loading. In the projectile-plate impact experiments, full-field back-surface strain measured using FBG Sensor arrays are compared with that measured from 3D surface Digital Image Correlation (3D-sDIC) strain measuring technique. Finally, strains in welded steel plates subjected to high explosive discharge are monitored with mounted FBG Sensors on the back surface. From this study, potential improvements in the SNR of FBG Sensors are recommended, and the survivability of these sensors under more complex, dynamic loading is evaluated.

2017 ◽  
Vol 100 ◽  
pp. 166-174 ◽  
Author(s):  
James Ayers ◽  
Tusit Weerasooriya ◽  
Anindya Ghoshal ◽  
Collin Pecora ◽  
Allan Gunnarsson ◽  
...  

1985 ◽  
Vol 46 (C5) ◽  
pp. C5-511-C5-516
Author(s):  
A. Kobayashi ◽  
S. Hashimoto ◽  
Li-lih Wang ◽  
M. Toba

2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2019 ◽  
Vol 742 ◽  
pp. 532-539 ◽  
Author(s):  
J. Tan ◽  
L. Lu ◽  
H.Y. Li ◽  
X.H. Xiao ◽  
Z. Li ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02022
Author(s):  
Vincent Grolleau ◽  
Vincent Lafilé ◽  
Christian C. Roth ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
...  

Among all other stress states achievable under plane stress conditions, the lowest ductility is consistently observed for plane strain tension. For static loading conditions, V-bending of small sheet coupons is the most reliable way of characterising the strain to fracture for plane strain tension. Different from conventional notched tension specimens, necking is suppressed during V-bending which results in a remarkably constant stress state all the way until fracture initiation. The present DYMAT talk is concerned with the extension of the V-bending technique from low to high strain rate experiments. A new technique is designed with the help of finite element simulations. It makes use of modified Nakazima specimens that are subjected to V-bending. Irrespective of the loading velocity, plane strain tension conditions are maintained throughout the entire loading history up to fracture initiation. Experiments are performed on specimens extracted from aluminum 2024-T3 and dual phase DP450 steel sheets. The experimental program includes quasi static loading conditions which are achieved on a universal testing machine. In addition, high strain rate experiments are performed using a specially-designed drop tower system. In all experiments, images are acquired with two cameras to determine the surface strain history through stereo Digital Image Correlation (DIC). The experimental observations are discussed in detail and also compared with the numerical simulations to validate the proposed experimental technique


1996 ◽  
Author(s):  
Richard D. Dick ◽  
William L. Fourney ◽  
John D. Williams

Sign in / Sign up

Export Citation Format

Share Document