High-speed 3-D shape measurement based on digital fringe projection

2003 ◽  
Vol 42 (1) ◽  
pp. 163 ◽  
Author(s):  
Peisen S. Huang
Author(s):  
Tao Peng ◽  
Satyandra K. Gupta

Point cloud acquisition using digital fringe projection (PCCDFP) is a non-contact technique for acquiring dense point clouds to represent the 3-D shapes of objects. Most existing PCCDFP systems use projection patterns consisting of straight fringes with fixed fringe pitches. In certain situations, such patterns do not give the best results. In our earlier work, we have shown that in some situations, patterns that use curved fringes with spatial pitch variation can significantly improve the process of constructing point clouds. This paper describes algorithms for automatically generating adaptive projection patterns that use curved fringes with spatial pitch variation to provide improved results for an object being measured. In addition, we also describe the supporting algorithms that are needed for utilizing adaptive projection patterns. Both simulation and physical experiments show that, adaptive patterns are able to achieve improved performance, in terms of measurement accuracy and coverage, than fixed-pitch straight fringe patterns.


2005 ◽  
Vol 295-296 ◽  
pp. 471-476
Author(s):  
Liang Chia Chen ◽  
S.H. Tsai ◽  
Kuang Chao Fan

The development of a three-dimensional surface profilometer using digital fringe projection technology and phase-shifting principle is presented. Accurate and high-speed three-dimensional profile measurement plays a key role in determining the success of process automation and productivity. By integrating a digital micromirror device (DMD) with the developed system, exclusive advantages in projecting flexible and accurate structured-light patterns onto the object surface to be measured can be obtained. Furthermore, the developed system consists of a specially designed micro-projecting optical unit for generating flexibly optimal structured-light to accommodate requirements in terms of measurement range and resolution. Its wide angle image detection design also improves measurement resolution for detecting deformed fringe patterns. This resolves the problem in capturing effective deformed fringe patterns for phase shifting, especially when a coaxial optical layout of a stereomicroscope is employed. Experimental results verified that the maximum error was within a reasonable range of the measured depth. The developed system and the method can provide a useful and effective tool for 3D full field surface measurement ranging from µm up to cm scale.


Sign in / Sign up

Export Citation Format

Share Document