pulse width
Recently Published Documents


TOTAL DOCUMENTS

5156
(FIVE YEARS 1122)

H-INDEX

65
(FIVE YEARS 10)

2022 ◽  
Vol 48 ◽  
pp. 104009
Author(s):  
Matthias Steinstraeter ◽  
Josef Gandlgruber ◽  
Jan Everken ◽  
Markus Lienkamp

Author(s):  
Abderrahmane Ouchatti ◽  
Redouane Majdoul ◽  
Ahmed Moutabir ◽  
Abderrahim Taouni ◽  
Abdelouahed Touati

In this article, a three-phase multilevel neutral-point-clamped inverter with a modified t-type structure of switches is proposed. A pulse width modulation (PWM) scheme of the proposed inverter is also developed. The proposed topology of the multilevel inverter has the advantage of being simple, on the one hand since it does contain only semiconductors in reduced number (corresponding to the number of required voltage levels), and no other components such as switching or flying capacitors, and on the other hand, the control scheme is much simpler and more suitable for variable frequency and voltage control. The performances of this inverter are analyzed through simulations carried out in the MATLAB/Simulink environment on a three-phase inverter with 9 levels. In all simulations, the proposed topology is connected with R-load or RL-load without any output filter.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Rahul Kumar ◽  
Amandeep Singh Sappal

Abstract Optical communication systems introduced paradigm shift in the forte of data transmission at higher speeds and over longer distances where, on contrary electrical transmission systems failed due to higher amplitude degradation, interferences and lower bandwidths. However, pulse width increase (PWI) in the optical fiber limits the overall distance reach and also introduces more bit errors which needs to addressed. So far, pulse width shortening fibers (PFs) and fiber Bragg grating (FG) used individually in most of the reported studies, however pulse width shortening (PWS) took either high cost (in PFs) or lower PWS efficiency (PWSE) (in FG). Therefore, in this research manuscript, we made emphasis on the combined PWS effects of diverse techniques such as optical phase conjugation (OC), FG and PFs in ultra-dense wavelength division multiplexing (WDM) system. Total link length of 400 km has been covered in 128 channels ultra dense wavelength division multiplexing (UDWDM) system at 10 Gbps by incorporating diverse combined organized placements of FG, OC and PFs such as FG-PF, OC-PF and FG-PF-OC. Results revealed that economical and maximum PWSE arrangement for proposed system is FG-PF-OC.


2022 ◽  
Author(s):  
Irving Morgado-González ◽  
Jose Angel Cobos-Murcia ◽  
Marco Antonio Marquez-Vera ◽  
Omar Arturo Dominguez-Ramirez

Abstract This research proposes to obtain a mathematical model that describes the dynamic operation of a brushed DC motor, to obtain a state function considering the electrical, mechanical, and thermal effects of the DC motor. The dynamic evolution of the proposed function is evaluated by simulation using Matlab software, and by applying different values of the step type inputs for the brushed motor excitation employing pulse width modulation (PWM) to obtain a wide range of operations. Experimental results show that the developed state function, provides a reliable approximation to estimate the voltage, armature current, mechanical torque, and temperature of the brushed DC motor, showing an error percentage of 0.2%.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.


Author(s):  
Bolisetti Kavya Santhoshi ◽  
Kuppusamy Mohanasundaram ◽  
Vishnu Kumar Kaliappan ◽  
Ravishankar Sathyamurthy

Author(s):  
Yangyu Liu ◽  
Xue Cao ◽  
AnHua Xian ◽  
Guangmiao Liu ◽  
Wei zhou ◽  
...  

Abstract We demonstrate stable continuous-wave mode-locking (CWML) pulses around 1645nm by employing the home-made Er:YAG ceramic. By using a fiber laser and semiconductor saturable absorber mirror (SESAM) with modulation depth of 1.2%, we get ML pulses with the output average power up to 815 mW, the pulse width shortened as ~4 ps, and the peak power of 1.8 kW. With the SESAM of modulation depth of 2.4%, the second-order harmonic ML pulses were also obtained. As far as we know, this is the first report of CWML from Er3+-doped ceramics and also the shortest pulse duration in Er3+-doped solid-state oscillators.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Miguel Fernandez ◽  
Alberto Rodriguez ◽  
Miguel Rodríguez ◽  
Aitor Vazquez ◽  
Pablo Fernandez ◽  
...  

This paper proposes a simple, hardware-efficient digital pulse width modulator for a 4SBB that enables operation in Buck, Boost, and Buck+Boost modes, achieving smooth transitions between the different modes. The proposed modulator is simulated using Simulink and experimentally demonstrated using a 500 W 4SBB converter with 24 V input voltage and 12–36 V output voltage range.


Sign in / Sign up

Export Citation Format

Share Document