scholarly journals Self-optimizing adaptive optics control with reinforcement learning for high-contrast imaging

Author(s):  
Rico Landman ◽  
Sebastiaan Y. Haffert ◽  
Vikram M. Radhakrishnan ◽  
Christoph U. Keller
Author(s):  
Emiel H. Por ◽  
Sebastiaan Y. Haffert ◽  
Vikram Mark Radhakrishnan ◽  
David S. Doelman ◽  
Maaike van Kooten ◽  
...  

2018 ◽  
Vol 617 ◽  
pp. A144 ◽  
Author(s):  
H. J. Hoeijmakers ◽  
H. Schwarz ◽  
I. A. G. Snellen ◽  
R. J. de Kok ◽  
M. Bonnefoy ◽  
...  

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars. Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ~ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star. Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO’s Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features. Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T = 1700 K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19–27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7 × 10−5 in this 2.5 hr data set, a factor ~40 below the raw noise level at an angular distance of 0.36′′ from the star. Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.


2018 ◽  
Vol 620 ◽  
pp. L10 ◽  
Author(s):  
F. Cantalloube ◽  
E. H. Por ◽  
K. Dohlen ◽  
J.-F. Sauvage ◽  
A. Vigan ◽  
...  

The latest generation of high-contrast instruments dedicated to exoplanets and circumstellar disk imaging are equipped with extreme adaptive optics and coronagraphs to reach contrasts of up to 10−4 at a few tenths of arcseconds in the near-infrared. The resulting image shows faint features, only revealed with this combination, such as the wind driven halo. The wind driven halo is due to the lag between the adaptive optics correction and the turbulence speed over the telescope pupil. However, we observe an asymmetry of this wind driven halo that was not expected when the instrument was designed. In this letter, we describe and demonstrate the physical origin of this asymmetry and support our explanation by simulating the asymmetry with an end-to-end approach. From this work, we find that the observed asymmetry is explained by the interference between the AO-lag error and scintillation effects, mainly originating from the fast jet stream layer located at about 12 km in altitude. Now identified and interpreted, this effect can be taken into account for further design of high-contrast imaging simulators, next generation or upgrade of high-contrast instruments, predictive control algorithms for adaptive optics, or image post-processing techniques.


Sign in / Sign up

Export Citation Format

Share Document